A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal

Zheng Wang,^{ab} Jian-Hua Zhang,^a Ji-Jun Jiang,^a Hai-Ping Wang,^a Zhang-Wen Wei,^a Xunjin Zhu,^{*b} Mei Pan,^{*a} and Cheng-Yong Su^a

^aLehn Institute of Functional materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of

Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

^bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, China.

- 1. Crystal structure of LIFM-WZ-3
- 2. Organic dyes with different sizes and charges
- 3. The nitrogen sorption isotherm at 77 K and pore size distribution
- 4. The sorption isotherms of CO₂, CH₄, C₂H₆, C₂H₄, C₃H₆ and water vapor
- 5. Calculations of adsorption isosteric heats
- 6. CO_2/N_2 , CO_2/CH_4 , C_xH_y/CH_4 , C_3/C_2 selectivity prediction via IAST
- 7. More dye adsorption test results and photos
- 8. The adsorption capacity of LIFM-WZ-3 for different cationic dyes

1. Crystal structure of LIFM-WZ-3

Identification code	LIFM-WZ-3
Empirical formula	$C_{96}H_{48}Cl_2Cu_{4.50}N_{40}O_{0.50}$
Formula weight	2126.57
Temperature	100 K
Wavelength	1.54178Å
Crystal system	Monoclinic
Space group	<i>P2/m</i>
a, Å	16.9552(10)
b, Å	19.4089(10)
<i>c</i> , Å	18.5986(9)
a, °	90
<i>β</i> , °	99.771(4)
γ, °	90
<i>V</i> , Å ³	6031.7(6)
Ζ	2
Calculated density	1.171
Crystal size, mm	0.11 x 0.10 x 0.09
Absorption coefficient	1.752
F(000)	2145
Theta range for data collection	2.28 to 52.99°
Limiting indices	-17<=h<=17,
	0<=k<=19, 0<=l<=19
Reflections collected	7180
Independent reflections	7180 [R(int) = 0.0997]
Completeness to theta $= 65.54$	98.3%
Refinement method	Full-matrix least-
	res on F^2
Data/restraints/parameters	7180/1924/956
Quality-of-fit indicator	1.051
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.1360$
	$_{W}R_{2} = 0.2756$
R indices (all data)	$R_1 = 0.1904$
	$_{W}R_{2} = 0.2927$
Largest diff. peak and hole	1.327 and -0.855 e.Å ⁻³

Table S1. Crystal data and structure refinement for LIFM-WZ-3

LIFM-WZ-3 O(1W)-Cu(3)2.343(5)Cu(2)-Cl(2)#7 2.562(9)O(1W)-Cu(3)#1 2.343(5)2.562(9) Cu(2)-Cl(2)Cu(1)-N(3)1.975(19) Cu(3)-N(10)#8 1.922(18)Cu(1)-N(2)#2 1.997(11)Cu(3)-N(10) 1.922(18) Cu(1)-N(2)1.997(11) Cu(3)-Cl(1)2.571(14) Cu(1)-N(1)1.999(18)Cu(4)-N(9)1.938(16) Cu(2)-N(6)#3 1.965(12)Cu(4)-N(9)#8 1.938(16) Cu(2)-N(6)#4 1.965(11)Cu(4)-N(5)#5 1.974(13)Cu(2)-N(6)#5 1.965(11)Cu(4)-N(5)#6 1.974(13)Cu(2)-N(6)#6 1.965(11)Cu(4)-Cl(2)2.571(11)Cu(5)-N(13A)#8 2.034(17)Cu(4)-Cl(1)2.610(13)Cu(5)-N(12) 2.034(16)Cu(5)-N(13A) 2.034(17)Cu(5)-N(12)#8 2.034(16)Cu(5)-N(12A) 2.042(16)Cu(5)-N(12A)#8 2.042(16)Cu(5)-N(13)#8 2.049(17)Cu(5)-N(13)2.049(17)N(5)-Cu(4)#9 1.974(13)N(6)-Cu(2)#9 1.965(11)N(3)-Cu(1)-N(2)#2 89.3(4) N(6)#3-Cu(2)-N(6)#4 90.3(6) N(3)-Cu(1)-N(2)89.3(4) N(6)#3-Cu(2)-N(6)#5 180.000(3) N(2)#2-Cu(1)-N(2) 178.3(7) N(6)#4-Cu(2)-N(6)#5 89.7(7) 89.7(6) N(3)-Cu(1)-N(1)179.8(7) N(6)#3-Cu(2)-N(6)#6 N(2)#2-Cu(1)-N(1) 90.7(4) N(6)#4-Cu(2)-N(6)#6 180.000(4)N(2)-Cu(1)-N(1)90.7(4) N(6)#5-Cu(2)-N(6)#6 90.3(6) N(6)#3-Cu(2)-Cl(2)#7 86.0(4) N(6)#3-Cu(2)-Cl(2) 94.0(4) N(6)#4-Cu(2)-Cl(2)#7 86.0(4) N(6)#4-Cu(2)-Cl(2) 94.0(4) N(6)#5-Cu(2)-Cl(2)#7 94.0(4) N(6)#5-Cu(2)-Cl(2) 86.0(4) N(6)#6-Cu(2)-Cl(2)#7 N(6)#6-Cu(2)-Cl(2) 86.0(4) 94.0(4) Cl(2)#7-Cu(2)-Cl(2) O(1W)-Cu(3)-Cl(1)180.000(2)123.8(4) N(9)-Cu(4)-N(9)#8 90.4(9) N(10)#8-Cu(3)-N(10) 92.5(10) N(9)-Cu(4)-N(5)#5 90.3(6) N(10)#8-Cu(3)-O(1W) 126.2(6) N(9)#8-Cu(4)-N(5)#5 N(10)-Cu(3)-O(1W)176.7(7)126.2(5)N(10)#8-Cu(3)-Cl(1) N(9)-Cu(4)-N(5)#6 176.7(7)88.3(6) N(9)#8-Cu(4)-N(5)#6 90.3(5) N(5)#5-Cu(4)-Cl(1) 90.5(4) N(5)#5-Cu(4)-N(5)#6 88.8(7) N(5)#6-Cu(4)-Cl(1) 90.5(4) N(9)-Cu(4)-Cl(2)95.6(6) Cl(2)-Cu(4)-Cl(1)177.3(4) N(9)#8-Cu(4)-Cl(2) 95.6(6) N(13A)-Cu(5)-N(13A)#8 112.7(11) N(5)#5-Cu(4)-Cl(2) 87.6(4) N(13A)-Cu(5)-N(12) 89.6(8) N(5)#6-Cu(4)-Cl(2) 87.6(4) N(13A)#8-Cu(5)-N(12) 23.1(7) N(9)-Cu(4)-Cl(1)86.3(6) N(13A)-Cu(5)-N(12)#8 23.1(7)N(9)#8-Cu(4)-Cl(1) 86.3(6) N(13A)#8-Cu(5)-N(12)#8 89.6(8) N(12)-Cu(5)-N(12A) 179.4(10) N(12)-Cu(5)-N(12)#8 66.4(11)

Table S2. Selected bond lengths (Å) and angles (deg) for LIFM-WZ-3

N(13A)-Cu(5)-N(12A)#8

114.0(8)

N(12)#8-Cu(5)-N(12A)

156.4(8)

N(12A)#8-Cu(5)-N(12A)	65.6(11)	N(13A)#8-Cu(5)-N(12A)#8	90.9(8)
N(13A)-Cu(5)-N(13)#8	65.0(8)	N(12)-Cu(5)-N(12A)#8	114.0(8)
N(13A)#8-Cu(5)-N(13)#8	176.3(9)	N(12)#8-Cu(5)-N(12A)#8	179.4(10)
N(12)-Cu(5)-N(13)#8	154.5(8)	N(13A)-Cu(5)-N(12A)	90.9(8)
N(12)#8-Cu(5)-N(13)#8	88.1(8)	N(13A)#8-Cu(5)-N(12A)	156.4(8)
N(12A)#8-Cu(5)-N(13)#8	91.5(9)	N(12)#8-Cu(5)-N(13)	154.5(8)
N(12A)-Cu(5)-N(13)#8	26.0(7)	N(12A)#8-Cu(5)-N(13)	26.0(7)
N(13A)-Cu(5)-N(13)	176.3(9)	N(12A)-Cu(5)-N(13)	91.5(9)
N(13A)#8-Cu(5)-N(13)	65.0(8)	N(13)#8-Cu(5)-N(13)	117.2(11)
N(12)-Cu(5)-N(13)	88.1(8)		

Symmetry transformations used to generate equivalent atoms:

#1 -x-4,-y+1,-z-3 #2 x,-y+2,z #3 -x-5,-y+1,-z-4 #4 -x-5,y,-z-4 #5 x+1,y,z #6 x+1,-y+1,z #7 - x-4,-y+1,-z-4 #8 x,-y+1,z #9 x-1,y,z

Fig. S1 TGA curves of LIFM-WZ-3.

Fig. S2 The absorption spectra (NaOH/H₂O, 1×10^{-5} mol l⁻¹) of H₆TzPP and LIFM-WZ-3.

Fig. S3 Spindle-like 1D channels of LIFM-WZ-3 framework along *c* axis manifested in spacefill style.

2. Organic dyes with different sizes and charges

	Neutral			Anio	nic			Cationic	
Name	DY	SD-I	SD-II	AO-	MO-	MB+	CV+	BR+	RB ⁺
Charge	0	0	0	-1	-1	+1	+1	+1	+1
x(Å)	4.02	3.68	3.79	5.46	5.31	4.00	4.00	4.99	6.79
y(Å)	6.76	9.74	9.82	9.76	7.25	7.93	12.97	9.40	11.80
z(Å)	14.21	13.55	13.98	15.62	17.39	16.34	13.74	11.39	15.68

 Table S3. Organic dyes with different sizes and charges

DY: dimethyl yellow; SD-I: Sudan-I; SD-II:Sudan-II; AO: Acid orange; MO: methyl orange; MB: methylene blue; CV: crystal violet; BR: basic red; RB: rhodamine B;

3. The nitrogen sorption isotherms at 77 K and pore size distribution

Fig. S4 N₂ sorption isotherm of LIFM-WZ-3 at 77 K.

Fig. S5 Pore size distribution analyzed with SF method.

4. The sorption isotherms of CO₂, CH₄, C₂H₆, C₂H₄, C₃H₆ and water vapor

Fig. S6 CO₂ sorption isotherm of LIFM-WZ-3 at 195 K.

Fig. S7 CO₂ sorption isotherms of LIFM-WZ-3 at 298, 285 and 273 K.

Fig. S8 C_2H_4 and C_3H_6 sorption isotherms of LIFM-WZ-3 at 298 and 273K.

Fig. S9 Water vapor sorption isotherms of LIFM-WZ-3 at 298 K.

5. Calculations of adsorption isosteric heats

The isosteric heats of CO₂ for LIFM-WZ-3 were calculated with adsorption data measured at 298 and 273 K by the virial fitting method. A virial-type expression (eq. 1) which is composed of parameters a_i and b_i is used. In eq. 1, P is the pressure in torr, N is the adsorbed amount in mmol·g⁻¹, T is the temperature in Kelvin, a_i and b_i are the virial coefficients which are independent of temperature, and m and n are the numbers of coefficients required to adequately describe the isotherms. The values of the virial coefficients a_0 through a_m were then applied to calculate the isosteric heat of adsorption (eq 2). In eq. 2, Q_{st} is the coverage-dependent isosteric heat of adsorption and R is the universal gas constant.

 $\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \quad \text{eq. 1}$ $Q_{\text{st}} = -R \sum_{i=0}^{m} a_i N^i \quad \text{eq. 2}$

Fig. S10 CO₂ virial fitting (lines) of the adsorption isotherms (points) of LIFM-WZ-3 measured at 273, 285 and 298 K.

Fig. S11 CO₂ isosteric heat of LIFM-WZ-3.

6. CO₂/N₂, CO₂/CH₄, C_xH_y/CH₄, C₃/C₂ Selectivity Prediction via IAST

The experimental isotherm data for pure CO_2 and C_xH_y hydrocarbons (x = 1-3, measured at 273 K and 298 K) were fitted using a Langmuir Freundlich (LF) model:

$$q = \frac{a \cdot b \cdot p^{1}/n}{1 + b \cdot p^{1}/n}$$

Where q and p are adsorbed amounts and pressure of component i, respectively. The adsorption selectivities for binary mixtures of CO₂/N₂, CO₂/CH₄, C_xH_y/CH₄, were defined by

$$S_{i/j} = \frac{x_i}{x_j} * \frac{y_j}{y_i}$$

were calculated using the Ideal Adsorption Solution Theory (IAST) of Myers and Prausnitz. Where x_i is the mole fraction of component i in the adsorbed phase and y_i is the mole fraction of component i in the bulk.

Fig. S12 N₂, CO₂, CH₄, C₂H₄, C₂H₆ and C₃H₆ adsorption isotherms of LIFM-WZ-3 at 298 and 273 K fitted by LF model.

Fig. S13 Selectivities of CO_2/CH_4 (50:50) and CO_2/N_2 (15:85) at 298 and 273 K and calculated from the IAST based method.

Fig. S14 Selectivities of C_3 hydrocarbon over C_2 and C_2 versus CH_4 (50:50) at 298 K and calculated from the IAST based method.

Fig. S15 Selectivities of C_3 hydrocarbon over C_2 and C_2 versus CH_4 (50:50) at 273 K and calculated from the IAST based method.

Fig. S16 Selectivities of C_3 over CH_4 (50:50) calculated from the IAST based method at 273 and 298 K.

7. More dye adsorption test results and photos

Fig. S17 Temporal evolution of UV-Vis absorption spectra of MO⁻ in aqueous solution. The photographs show the colors of solution before and after 160 min of organic dye absorption.

Fig. S18 Temporal evolution of UV-Vis absorption spectra of AO⁻ in aqueous solution. The photographs show the colors of solution before and after 160 min of organic dye absorption.

Fig. S19 Temporal evolution of UV-Vis absorption spectra of DY in aqueous solution. The photographs show the colors of solution before and after 160 min of organic dye absorption.

Fig. S20 Temporal evolution of UV-Vis absorption spectra of SD-I in aqueous solution. The photographs show the colors of solution before and after 160 min of organic dye absorption.

Fig. S21 Temporal evolution of UV-Vis absorption spectra of SD-II in aqueous solution. The photographs show the colors of solution before and after 160 min of organic dye absorption.

Fig. S22 Temporal evolution of UV-Vis absorption spectra of SD-II/MB⁺ in aqueous solution. The photographs show the colors of solution before and after 960 min of organic dye absorption.

Fig. S23 The crystal photos of LIFM-WZ-3 before and after dye adsorption.

Fig. S24 Comparison between the dye adsorption and removal efficiency for MB⁺, CV⁺, BR⁺ and RB⁺ with LIFM-WZ-3 large crystals and powder samples, respectively (MB⁺ for 20 mg L⁻¹, 20 ml; CV⁺ for 20 mg L⁻¹, 20 ml; BR⁺ for 20 mg L⁻¹, 20 ml; RB⁺ for 5 mg L⁻¹, 20 ml).

Fig. S25 Eight runs of recycling adsorption experiments of MB^+ by LIFM-WZ-3 (2 mg MOF powders in 20 ml aqueous solution with the MB^+ concentration of 20 mg L⁻¹).

Fig. S26 PXRD patterns for LIFM-WZ-3 after repeated cycles of dye adsorption and release.

8. The adsorption capacity of LIFM-WZ-3 for different cationic dyes

The adsorption performance of LIFM-WZ-3 for MB⁺, BR⁺ and RB⁺ was studied. Table S4 showed that the adsorbed capacities (q_t) of MB⁺, CV⁺ and RB⁺ dyes on LIFM-WZ-3 related to time t, which can be calculated with the following relationship:

$$q_{e} = \frac{V(C_{o} - C_{e})}{M}$$
$$q_{t} = \frac{V(C_{o} - C_{t})}{M}$$

where q_e and q_t was the amount (mg/g) of dye adsorbed on the adsorbents at equilibrium and time t, respectively. C_0 , C_e , and C_t were the liquid-phase concentrations (mg/L) of dye at initial, equilibrium, and time t, respectively. V (L) and M (g) were the volume (L) of the dye solutions and the mass of the adsorbents, respectively.

Fig. S27 Temporal evolution of UV-Vis absorption spectra of RB⁺ in 20 ml aqueous solution (RB⁺ for 20 mg/L) containing 1-5 mg LIFM-WZ-3, respectively. The photographs show the colors of solution before and after 72 h of organic dye absorption.

Fig. S28 Temporal evolution of UV-Vis absorption spectra of MB^+ in 20 ml aqueous solution (MB^+ for 20 mg/L) containing 1-5 mg LIFM-WZ-3, respectively. The photographs show the colors of solution before and after 72 h of organic dye absorption.

Fig. S29 Temporal evolution of UV-Vis absorption spectra of CV^+ in 20 ml aqueous solution (CV^+ for 20 mg/L) containing 1-5 mg LIFM-WZ-3, respectively. The photographs show the colors of solution before and after 72 h of organic dye absorption.

	Adsorption capacity (mg g ⁻¹)					
Amounts of	MB^+	CV ⁺	RB^+			
adsorbent						
5 mg	197.2	189.7	105.1			
4 mg	242.19	217.5	76.6			
3 mg	324	282.3	101.67			
2 mg	489.25	383.25	91			
1 mg	983	713.5	141.5			

Table S4. The organic dye adsorption capacity of of 1-5 mg LIFM-WZ-3 after 72 h.