Supporting Information

Formation and suppression of defects during heat treatment of BiVO₄ photoanodes for solar water splitting

Marlene Lamers^a, Sebastian Fiechter^a, Dennis Friedrich^a, Fatwa F. Abdi^{*a} and Roel van de Krol^{*a}

^aInstitute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,

Hahn-Meitner-Platz 1, Berlin 14109, Germany

*Email: fatwa.abdi@helmholtz-berlin.de, roel.vandekrol@helmholtz-berlin.de

Fig. S1. V 2p and Bi 4f core level X-ray photoelectron spectra of BiVO₄ films annealed at 450 °C (top) and 700 °C (bottom) in air. The V:Bi ratios were determined from the relative areas of the XPS peaks.

Fig. S2. Mass spectroscopy (MS) analysis of BiVO₄ powders in air. Temperature-time curve during the MS analysis (black) and ion currents for mass-to-charge ratios (m/q) of 51 correspond to V+ (green).

Fig. S3. In-situ optical monitoring of the BiVO₄ film annealed in air. The x-axis is the wavelength (nm) and the y-axis is the temperature (°C). The color indicates the change in optical absorption with respect to the transmission at room temperature (T_{RT}). An increase of absorption with a central wavelength of ~500 nm starts to occur at ~470 °C.

Fig. S4. X-ray diffractograms of BiVO₄ powder and pellet. A stronger (010) orientation is found in the BiVO₄ pellet.

Fig. S5. Raman spectra of monoclinic BiVO₄ annealed in air at 450 °C and 700 °C for 2 h. The symmetric V-O stretching mode peak at ~826 cm⁻¹ is shifted to a larger wavenumber upon annealing at 700 °C. The peaks at 368, 326, 212 and 127 cm⁻¹ remain the same and are assigned to δ_s (VO₄), δ_{as} (VO₄) and the external modes, respectively.³⁷ The top plot shows the difference in the peak position (Δ_{peak}) for all the vibrations.

Fig. S6. Mass spectrometry (MS) analysis of BiVO₄ powder in Ar atmosphere. Temperature-time curve during the MS analysis (black) and mass-to-charge ratios (m/q) of 16, 32, 51, 67, 83, 209 and 225 corresponding to O (pink), O₂ (turquoise), V⁺ (green), VO⁺ (blue), VO₂⁺ (purple), Bi⁺ (red), and BiO⁻ (orange) are shown. The increase of the O₂ signal with temperature indicates the formation of oxygen vacancies (V^{*}₀), based on the following defect formation reaction: $O_0 \rightleftharpoons \frac{1}{2} O_2(g) + V_0^{**} + 2e'$.

Fig. S7. Natural logarithm of ion current as a function of reciprocal temperature for the detected MS signals of VO⁺, and VO_{2⁺}. The activation energy can be obtained from the slope of the curve, since \log_{A} current (*I*) is correlated to the activation energy (*E_A*) and temperature (*T*) according to the Arrhenius relationship ($I = Ae^{\frac{1}{kT}}$). Here, *A* is a constant and *k* is the Boltzmann constant.

Fig. S8. SEM images of BiVO₄ films annealed in air and Ar at different temperatures in the range from 450 °C to 700 °C.

Fig. S9. V 2p (left) and Bi 4f (right) core levels X-ray photoelectron spectra of BiVO₄ films annealed at 450 °C and 500 °C in air and 500 °C in Ar. Comparison of the O 1s spectra was difficult since they also contain contributions from the exposed FTO substrate due to the roughness/porosity of the BiVO₄ films.

Fig. S10. AM1.5 photocurrent-voltage curve of BiVO₄ films annealed in (a) air and (b) Ar at temperatures ranging from 450 to 550°C. The electrolyte is 0.1 M phosphate buffer (pH 7) with added Na₂SO₃ as a hole scavenger.

Fig. S11. Cross-sectional SEM images of BiVO₄ films annealed in air at 450 °C (a) and 500 °C (b). The thicknesses of both films are ~100 nm and ~110 nm, respectively.

Fig. S12. UV-Vis spectra of BiVO₄ films annealed in air at 450 °C (black), 500 °C (orange) and 550 °C (red).

Fig. S13. AM1.5 photocurrent-voltage curves of BiVO₄ films annealed in Ar at 550°C for 2h. Positive excursion of bias potential is shown to not positively affect the photoelectrochemical performance since the photocurrent-voltage curve slightly decreases with increasing cycles. The electrolyte is 0.1 M phosphate buffer (pH 7). The dark current is shown in grey.

Fig. S14. AM1.5 photocurrent-voltage curve of $BiVO_4$ films annealed in air at 500 °C for 2h (blue) and 8h (green). The electrolyte is 0.1 M phosphate buffer (pH 7) with added Na_2SO_3 as a hole scavenger. The dark current is shown in grey.

Fig, S15. Time resolved microwave conductivity (TRMC) signals of 100 nm thick BiVO₄ films annealed at 450 °C and 500 °C in air measured using a 355 nm laser with an intensity of 3.5×10^{13} photons pulse⁻¹ cm⁻².

Fig. S16. X-ray diffractograms of $BiVO_4$ films annealed in air at 450 °C and 700 °C as well as in a VO_x -rich atmosphere (i.e., air + $BiVO_4$ powders) at 700 °C. The corresponding diffraction peaks of monoclinic $BiVO_4$ are labeled accordingly.

Temperature	Specific surface area in μm^2
450 °C in air	31
500 °C in air	33.5
550 °C in air	31.6
500 °C in Ar	31

Table S1. Specific surface area of BiVO₄ films post-annealed in air between 450 and 550 °C obtained from AFM measurements on a projected area of $5 \times 5 \ \mu\text{m}^2$.

1. S. Nikam, S. Joshi, *RSC Adv.*, **2016**, *6*, 107463.