Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

General and Precise Carbon Confinement of Functional Nanostructures Derived from Assembled Metal-Phenolic Network for Enhanced Lithium Storage

Zhitong Xiao, Jiashen Meng, Qi Li^{*} Xiao Zhang, Ziang Liu, Bo Wen, Chunhua Han and Liqiang Mai^{*}

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,

International School of Materials Science and Engineering, Wuhan University of

Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China.

*E-mail: qi.li@whut.edu.cn; mlq518@whut.edu.cn

Fig. S1 (a-f) TG curves of $SnO_2@C-Fe_2O_3-1$, $SnO_2@C-Fe_2O_3-3$, $SnO_2@C-Fe_2O_3-7$, $SnO_2@C-Fe_2O_3-10$, $SnO_2@C-Fe_2O_3-15$ and $SnO_2@C-Fe_2O_3-20$, respectively, in air at 10 °C min⁻¹.

Fig. S2 The relationship between the content of Fe_2O_3 and the number of assembly layer according to the ICP results.

Fig. S3 (a, b) HRTEM images of SnO₂@C-Fe₂O₃-1 and SnO₂@C-Fe₂O₃-20, respectively.

Fig. S4 (a) XRD patterns of SnO₂, SnO₂@MPN-1, SnO₂@MPN-3, SnO₂@MPN-7, SnO₂@MPN-10, SnO₂@MPN-15 and SnO₂@MPN-20. (b) XRD patterns of SnO₂, SnO₂@C-Fe₂O₃-1, SnO₂@C-Fe₂O₃-3, SnO₂@C-Fe₂O₃-7, SnO₂@C-Fe₂O₃-10, SnO₂@C-Fe₂O₃-15 and SnO₂@C-Fe₂O₃-20. (c) Raman spectra of SnO₂@C-Fe₂O₃-1, SnO₂@C-Fe₂O₃-3, SnO₂@C-Fe₂O₃-7, SnO₂@C-Fe₂O₃-15 and SnO₂@C-Fe₂O₃-7, SnO₂@C-Fe₂O₃-10, SnO₂@C-Fe₂O₃-20.

Fig. S5 (a, b) Raman spectra of the pure carbon derived from gallic acid and pyrogallic acid, respectively.

Fig. S6 (a, c, e, g, i and k) SEM images of SnO₂@MPN-1, SnO₂@MPN-3, SnO₂@MPN-7, SnO₂@MPN-10, SnO₂@MPN-15 and SnO₂@MPN-20, respectively. (b, d, f, h, j and l) SEM images of SnO₂@C-Fe₂O₃-1, SnO₂@C-Fe₂O₃-3, SnO₂@C-Fe₂O₃-7, SnO₂@C-Fe₂O₃-10, SnO₂@C-Fe₂O₃-15 and SnO₂@C-Fe₂O₃-20, respectively.

Fig. S7 (a, d) N_2 adsorption/desorption isotherm and the corresponding pore size distribution of SnO₂, respectively. (b, e) N_2 adsorption/desorption isotherm and the corresponding pore size distribution of SnO₂@MPN-10, respectively. (c, f) N_2

adsorption/desorption isotherm and the corresponding pore size distribution of SnO₂@C-Fe₂O₃-10, respectively.

Fig. S8 (a) XRD patterns of ZnO, ZnO@MPN and ZnO@C-Fe₂O₃ microflowers. (b, c) SEM and TEM images of ZnO microflowers, respectively. (d) FT-IR spectra of ZnO and ZnO@MPN. (e, f) TG curve and Raman spectrum of ZnO@C-Fe₂O₃, respectively.

Fig. S9 (a) XRD patterns of LLO, LLO@MPN and LLO@C-Fe₂O₃ nanoparticles. (b, c) SEM and TEM images of LLO nanoparticles, respectively. (d) FT-IR spectra of LLO and LLO@MPN. (e, f) TG curve and Raman spectrum of LLO@C-Fe₂O₃, respectively.

Fig. S10 (a) XRD patterns of ZnS, ZnS@MPN and ZnS@C-Fe₂O₃ hollow spheres. (b, c) SEM and TEM images of ZnS hollow spheres, respectively. (d) FT-IR spectra of ZnS and ZnS@MPN. (e, f) TG curve and Raman spectrum of ZnS@C-Fe₂O₃, respectively.

Fig. S11 (a) CV curves of the first four cycles at the scan rate of 0.2 mV s^{-1} of SnO₂ in the 0.01-2.5 V range. (b, c) Charge-discharge curves (for the 1st, 2nd, 10th, 50th and

100th cycle at the rate of 0.2 A g^{-1}) of SnO₂ and SnO₂@C-Fe₂O₃-10, respectively. (d) The charge-discharge voltage profiles of the SnO₂ at different current densities.

Fig. S12 (a) XRD patterns of the C-Fe₂O₃ derived from pure MPN. (b) Chargedischarge curves (for the 1st, 2nd, 15th and 30th cycle at 0.2 A g^{-1}) of C-Fe₂O₃. (c) Cycling performance and the corresponding Coulombic efficiencies of C-Fe₂O₃ at 0.2 A g^{-1} . (d) Long-term cycling performance of C-Fe₂O₃ at 1 A g^{-1} .

Fig. S13 (a, b) SEM images after 100 cycles at 0.2 A g^{-1} for SnO₂ and SnO₂@C-Fe₂O₃-10, respectively.

Fig. S14 Nyquist plots measured at 2.5 V in the frequency range of 100 kHz-0.01 Hz.

Fig. S15 I-V curves of SnO₂ and SnO₂@C-Fe₂O₃-10.

Material	Sn : Fe	The content of Fe ₂ O ₃ (wt%)		
SnO ₂ @C-Fe ₂ O ₃ -1	0.9942 : 0.0058	0.61		
SnO ₂ @C-Fe ₂ O ₃ -3	0.9843 : 0.0157	1.64		
SnO ₂ @C-Fe ₂ O ₃ -7	0.9644 : 0.0356	3.64		
SnO ₂ @C-Fe ₂ O ₃ -10	0.9477 : 0.0523	5.28		
SnO ₂ @C-Fe ₂ O ₃ -15	0.9496 : 0.0804	7.98		
SnO ₂ @C-Fe ₂ O ₃ -20	0.8754 : 0.1246	12.12		

Table S1. The ICP test results of the SnO₂@C-Fe₂O₃-1, SnO₂@C-Fe₂O₃-3, SnO₂@C-Fe₂O₃-7, SnO₂@C-Fe₂O₃-10, SnO₂@C-Fe₂O₃-15 and SnO₂@C-Fe₂O₃-20.

Table S2. A comparison of our work and conventional carbon coating methods.

Coating methods	Coating sources	Advantages	Disadvantages	References	
Metal-phenolic network modification	MPN	 Precise control Simple and fast manipulation Programmable process No substrate selectivity Low cost 	• Solvent consuming	Our work	
Solution-based polymerization	Dopamine	 Simple manipulation Low cost No substrate selectivity 	 Solvent consuming Tedious synthesis process Hard control on uniform coatings 	<i>Adv. Mater.</i> 2017, 29 , 1700989.	
Low-pressure vapor superassembly	MOFs	 No solvent consuming Low cost Simple manipulation 	 Substrate material selectivity Hard control on precise coatings 	Nano Lett. 2017, 17 , 7773- 7781.	

			• Some requirements of operation condition	
Sol-gel method	Citric acid	 Simple manipulation Low cost No substrate selectivity 	 Hard control on uniform coatings Solvent consuming Tedious synthesis process 	J. Alloys Compd.2011, 509 , 712-718.
Chemical vapor deposition	Carbon	 Precise control Uniform deposition High quality coatings 	 Complex manipulation High cost High requirements of operation condition 	J. Mater. Chem. 2010, 20 , 595- 602.
Atomic layer deposition	Metal organic compounds	 Uniform and conformal deposition High quality coatings Precise control 	 High cost Complex manipulation High requirements of operation condition 	Energy Environ. Sci., 2012, 5 , 6872- 6879.

	T 7 1 4	0		Residual			
	voltage	Current	Cycle	capacity	Capacity	Deferment	
SnO ₂ anode	range	density	number	(mA h g ⁻	retention	Reference	
	(v)	(mA g ⁻¹)		¹)			
SnO ₂ @C-Fe ₂ O ₃ -10	0.01-	200	100	1203	91 %	0	
	2.5	1000	1000	1003	86 %	Our work	
Hollow Structured							
SnO ₂ @Si	0.01-1	300	500	778	86 %	S 1	
nanospheres							
RGO/SnO ₂	0.01.0	0.01.2	100	200	719	70.0/	52
composites	0.01-2	100	200	/18	/9 %	52	
Silver							
nanoparticle-							
decorated	0.01-3	1000	500	826	81 %	S 3	
SnO ₂ /NiO							
nanotubes							
rGO enwrapping							
hollow SnO ₂	0.01-3	100	100	1107	82 %	S 4	
nanospheres							
Sandwiched							
C@SnO ₂ @C	0.005-3	100	50	933	93 %	S 5	
hollow structures							
Ultrafine							
SnO ₂ /graphene	0.01-3	1000	230	970	97 %	S 6	
nanocomposite							
SnO ₂ @Fe ₂ O ₃	0.01.2	100	200	750.9	92.0/	\$7	
sandwich cubes	0.01-3	0.01-3 100	200	/30.8	03 %	5/	

Table S3. Electrochemical performance comparison of various modified SnO₂ anode.

Carbon coated SnO ₂	0.01					
nanoparticles	0.01-	1000	150	930	81 %	S 8
anchored on CNT	2.5					
Okra-like SnO ₂						
encapsulated in	0.01.2	200	190	1041	76 1 0/	50
nitrogen-doped	0.01-3	200	180	1041	70.4 %	39
graphene						
Porous micron-	0.01.2	200	100	054	06.0/	S 10
SnO ₂ /C composites	0.01-3	200	100	904	90 %	510

References

- T. Ma, X. Yu, H. Li, W. Zhang, X. Cheng, W. Zhu and X. Qiu, *Nano Lett.*, 2017, 17, 3959-3964.
- L. Wang, D. Wang, Z. Dong, F. Zhang and J. Jin, *Nano Lett.*, 2013, 13, 1711-1716.
- 3. C. Kim, J. W. Jung, K. R. Yoon, D. Y. Youn, S. Park and I. D. Kim, *ACS Nano*, 2016, **10**, 11317-11326.
- 4. X. Hu, G. Zeng, J. Chen, C. Lu and Z. Wen, *J. Mater. Chem. A*, 2017, **5**, 4535-4542.
- 5. J. Qin, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li and C. He, *J. Mater. Chem. A*, 2017, **5**, 10946-10956.
- 6. W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cui and C. Liu, *J. Mater. Chem. A*, 2017, **5**, 10027-10038.
- Y. Zeng, J. Luo, Y. Wang, L. Qiao, B. Zou and W. Zheng, *Nanoscale*, 2017, 9, 17576-17584.
- 8. C. Ma, W. Zhang, Y. S. He, Q. Gong, H. Che and Z. F. Ma, *Nanoscale*, 2016, **8**, 4121-4126.
- 9. X. Zhou, S. Chen, J. Yang, T. Bai, Y. Ren and H. Tian, *ACS Appl. Mater. Interfaces*, 2017, **9**, 14309-14318.
- M.-S. Wang, M. Lei, Z.-Q. Wang, X. Zhao, J. Xu, W. Yang, Y. Huang and X. Li, *J. Power Sources*, 2016, **309**, 238-244.