Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Marcasite Iron Sulfide as a High-Capacity Electrode Material for Sodium Storage

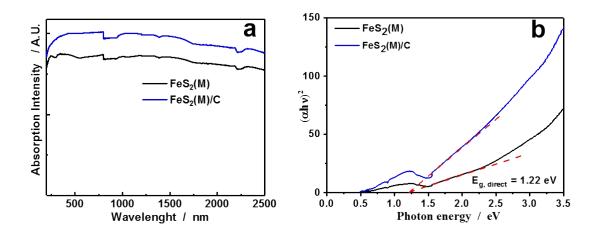
Natalia Voronina^a, Hitoshi Yashiro^b, Seung Taek Myung^{a,*}

Tel: 82 23408-3454, fax: 82 23408-4342, e-mail: smyung@sejong.ac.kr (S.T. Myung)

^a Department of Nano Technology and Advanced Materials Engineering, Sejong Battery Institute, Sejong University, Seoul, 05006, South Korea.

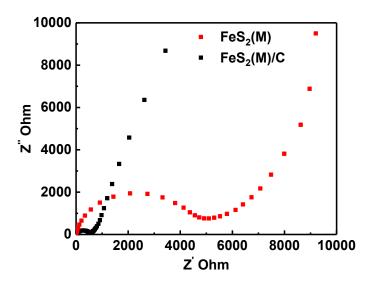
^b Department of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan

^{*}Corresponding author

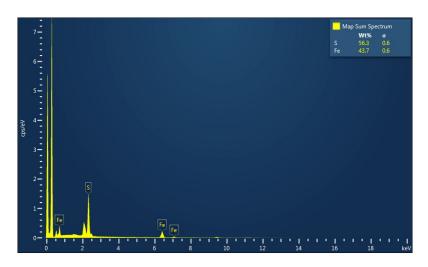

SI Table 1. Structural parameters obtained from Rietveld refinements for $FeS_2(M)$ and $FeS_2(M)/C$

FeS₂(M)

Composition	FeS_2								
Space group	Pnnm								
Atom	Wyckoff Position	X	у	z	B / Å ²	g			
Fe	2 <i>a</i>	0	0	0	0.04	1			
S	4g	0.202(5)	0.382(5)	0	0.05	1			
	a=4.447(5)Å								
Lattice parameters	b=5.427(5)Å								
	c=3.387(5)Å								
$R_{ m p}$ / $\%$	6.82								
$R_{ m wp}$ / %	9.08								


FeS₂(M)/C

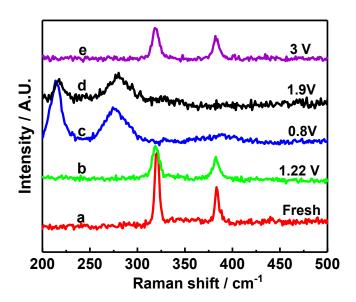
Composition	FeS_2 $Pnnm$								
Space group									
Atom	Wyckoff Position	X	y	Z	B / Å ²	g			
Fe	2 <i>a</i>	0	0	0	0.05	1			
S	4g	0.202(5)	0.382(5)	0	0.06	1			
	a=4.447(5)Å								
Lattice parameters	b=5.427(5)Å								
	c=3.387(5)Å								
$R_{ m p}$ / %	5.14								
$R_{ m wp}$ / %	6.37								



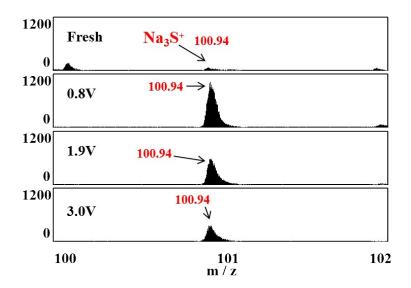
SI Figure 1. (a) UV-vis-NIR absorbance spectra of $FeS_2(M)$ and $FeS_2(M)/C$ (b) Tauc plots of $FeS_2(M)$ and $FeS_2(M)/C$


The optical behavior of $FeS_2(M)$ and $FeS_2(M)/C$ was studied by UV-vis-NIR absorbance spectroscopy. From the absorbance spectra, the optical band gaps of $FeS_2(M)$ and $FeS_2(M)/C$ were calculated by using Tauc equation.¹ The measurement showed a direct band gap of 1.22 eV with a subgap optical absorption at 0.5 eV for both $FeS_2(M)$ and $FeS_2(M)/C$ materials.

SI Figure 2. AC impedance spectra of $FeS_2(M)$ and $FeS_2(M)/C$ composite before cycling.



SI Figure 3. EDX spectrum of $FeS_2(M)$.


SI Figure 4. AC impedance spectra of $FeS_2(M)/C$ before cycling OCV, after 1st discharge to 0.8V and after high-rate cycling.

Impedance Nyquist plots were collected before cycling at OCV, after first discharge and after high-rate cycling. The Nyquist plot shows that the charge transfer resistance decreases significantly after first discharge proceeds and even underwent significant reduction after charge-discharge cycles, especially after high-rate cycling, which prove that the superior rate capability is attributed to the improved charge transfer.

SI Figure 5. Raman spectra of FeS₂(M)/C electrode (a) fresh (b) discharged to 1.22 V (c) discharged to 0.8 V (d) charged to 1.9 V (e) charged to 3 V

Ex situ Raman was used to identify the structural transformations of $FeS_2(M)/C$ composite during first discharge and charge. The Raman spectra of fresh electrode exhibit two peaks of A_g mode of $FeS_2(M)$ structure. These peaks started to weaken as the sodiation goes and disappear at 0.8 V. At the same time three significant modes at 217, 274, 384 cm⁻¹ ascribed to FeS structure² appeared and observed at discharge to 0.8 V. During further desodiation, the peaks of FeS structure start to decrease and at the end of charge A_g vibration of $FeS_2(M)$ reforms back, indicating that the reaction of $FeS_2(M)/C$ composite is highly reversible.

SI Figure 6. TOF-SIMS spectra of $FeS_2(M)/C$ upon sodiation (discharge) to 0.8 V and desodiation (charge) to 3 V, Na_3S^+ positive fragment (m=100.94)

References

- 1 J. Tauc, A. Menth, J Non-Cryst Solids, 1972, 8–10, 569–585
- 2 P.Ramakrishnan, S. Shanmugam, J. H. Kim, *ChemSusChem.*, 2017, **10**, 1 10