Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

# **Electronic Supplementary information**

## In-situ Formation of Ni<sub>3</sub>Se<sub>4</sub> Nanorod Array as a Versatile Electrocatalyst for

### **Electrochemical Oxidation Reactions in Hybrid Water Electrolysis**

Jun-Ye Zhang,<sup>a+</sup> Xiaonan Tian, <sup>a+</sup> Ting He, <sup>a</sup> Shahid Zaman, <sup>a</sup> Mao Miao, <sup>a</sup> Ya Yan, <sup>b</sup> Kai Qi, <sup>a</sup> Zehua Dong, <sup>a</sup>

Hongfang Liu, <sup>a</sup> and Bao Yu Xia <sup>a\*</sup>

<sup>a</sup> Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China

<sup>b</sup> School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China

+ *These authors contribute equally to this work.* 

Corresponding author: byxia@hust.edu.cn (B. Y. Xia)

#### 1. Material synthesis.

All chemical reagents were directly used without any further purification. The catalyst was synthesized by a one-step hydrothermal method. Specifically, 7.5 mmol selenium, 300 mg NaOH were added in a 100 mL Teflon-lined stainless autoclave, then 30 mL N,N-Dimethylformamide (DMF) and 0.28 mL 85% hydrazine hydrate was added. After stirring for 10 min, nickel foam (2 cm × 4 cm) was added. Then the mixture was heated at 180 °C for 6 h. After cooling down naturally, the product was washed with DI water and ethanol for three times respectively and dried at 60 °C for 24 hours.

#### 2. Material Characterization.

Scanning electron microscopy (SEM) observation was carried out on JEOL JSM-7100F. Transmission electron microscopy (TEM) observation was performed on TecnaiG2 20 (Philips) at an accelerating voltage of 200 kV. The crystal phase was characterized by Empyrean (PANalytical B.V. with Cu-Kα radiation). The Raman spectroscopy was collected from LabRAM HR800. Inductively coupled plasma optical emission spectrometry (ICP-OES) was measured by Agilent ICPOES730. The X-ray photoelectron spectroscopy (XPS) experiment was implemented on a Kratos AXIS Ultra DLD-600W XPS system with a monochromatic Al Kα (1486.6 eV) X-ray source.

#### 3. Electrochemical test.

All experiments were implemented in three-electrode system by AUTOLAB 302N electrochemistry workstation. Graphite rod and calibrated Ag/AgCl were used as counter electrode and reference electrode respectively. The following equation was used for conversion versus RHE: E (RHE) = E (Ag/AgCl) +0.195 V +0.059×pH. Linear sweep voltammetry (LSV) was tested 5 mV s<sup>-1</sup> for the polarization curves. The mass loading of IrO<sub>2</sub> is 1 mg cm<sup>-2</sup>. Electrochemical impedance spectroscopy (EIS) was collected at a frequency between 0.01 Hz and 100 KHz. Chronopotentiometry was implemented under a current density of 10 mA cm<sup>-2</sup>. For electrochemically active surface area (ECSA) measurements, scan rates were 10, 20, 30, 40, 50, 60

mV s<sup>-1</sup>. Oxygen evolution reaction (OER), urea oxidation reaction (UOR) and hydrazine oxidation reaction electrolysis were carried out in 1.0 M KOH, 1.0 M KOH with 0.1 M urea, 1.0 M KOH with 0.5 M hydrazine hydrate, respectively. The tested pH value (25 °C) of 1.0 M KOH, 0.1 M urea (in 1.0 M KOH), 0.5 M urea (in 1.0 M KOH), 0.1 M N<sub>2</sub>H<sub>4</sub> (in 1.0 M KOH), and 0.5 M N<sub>2</sub>H<sub>4</sub> (in 1.0 M KOH) was 14.02, 14.04, 14.05, 14.00, and 14.00, respectively.



Figure S1. SEM image of nickel foam substrate.



**Figure S2.** TEM images of Ni<sub>3</sub>Se<sub>4</sub> nanorod. Figure 1e and Figure S2d is derived from the selected area (black circle) of Figure S2c.



**Figure S3.** SEM images of different Se powder feeding ratio: a) and b) 3.75 mmol; c) and d) 7.5 mmol; e) and f) 11.25 mmol.



Figure S4. Raman spectrum of Ni<sub>3</sub>Se<sub>4</sub> and Ni foam.



Figure S5. XPS survey spectrum of Ni<sub>3</sub>Se<sub>4</sub> sample.



Figure S6. The corresponding OER Tafel slopes of Ni<sub>3</sub>Se<sub>4</sub>, Ni foam and IrO<sub>2</sub>.



Figure S7. LSV curves of different production obtained with different selenium ratios.



**Figure S8.** CV curves of (a) Ni<sub>3</sub>Se<sub>4</sub> and (b) Ni foam from 10 mV s<sup>-1</sup> to 60 mV s<sup>-1</sup>, (c) Cdl comparison of Ni<sub>3</sub>Se<sub>4</sub> and Ni foam.



Figure S9. CV curve of UOR in 1.0 M KOH with 0.1 M urea.



Figure S10. CV curve of HzOR in 1.0 M KOH with 0.5 M N<sub>2</sub>H<sub>4</sub>.

 Table S1. OER activity of recent reported catalysts.

| Catalysts                               | Electrolyte | Overpotential      | Overpotential      | Tafel               | Reference                      |
|-----------------------------------------|-------------|--------------------|--------------------|---------------------|--------------------------------|
|                                         |             | (m) $(mV)$         | (m) $(mV)$         | slope               |                                |
|                                         |             | $(\eta_{10})$ (mv) | $(\eta_{50})$ (mv) | (mV                 |                                |
|                                         |             |                    |                    | dec <sup>-1</sup> ) |                                |
| Ni <sub>3</sub> Se <sub>4</sub> nanorod | 1 M KOH     | 243                | 309                | 40                  | This work                      |
| NF@NC - CoFe                            | 1 M KOH     | 240                |                    | 45                  | <i>Adv. Mater.</i> 2017,       |
|                                         |             |                    |                    |                     | 29, 1604437                    |
| <sub>2</sub> O <sub>4</sub> /C NRAs     |             |                    |                    |                     |                                |
| Mn-Co                                   | 1 M KOH     | 320                |                    | 52                  | Angew.Chem. Int.               |
| oxyphosphide                            |             |                    |                    |                     | Ed. 2017, 56,                  |
|                                         |             |                    |                    |                     | 2386                           |
| Fe <sub>1</sub> Co <sub>1</sub> -ONS    | 0.1 M       | 308                |                    | 36.8                | Adv. Mater. 2017,              |
|                                         | КОН         |                    |                    |                     | 29, 1606793                    |
| A-CoS <sub>4.6</sub> O <sub>0.6</sub> - | 1 M KOH     | 290                |                    | 67                  | Angew.Chem.Int                 |
| PNCs                                    |             |                    |                    |                     | . <i>Ed.</i> <b>2017</b> ,     |
|                                         |             |                    |                    |                     | 56,4858                        |
| Ni <sub>3</sub> FeAl <sub>0.91</sub> -  | 1 M KOH     | 304                |                    | 57                  | Nano Energy                    |
| LDH/NF                                  |             |                    |                    |                     | 2 <b>017</b> , <i>35</i> , 350 |
| CuO                                     | 1 M         | 290                |                    | 64                  | Angew.Chem.                    |
|                                         | NaOH        |                    |                    |                     | <b>2017</b> , <i>129</i> ,4870 |
| N-CoFe LDHs                             | 1 M KOH     | 281                |                    | 40.03               | Adv. Funct.                    |
|                                         |             |                    |                    |                     | Mater. 2018, 28,               |
|                                         |             |                    |                    |                     | 1703363                        |
| Fe-doped NiOx                           | 1 M KOH     | 310                |                    | 49                  | Nano Energy                    |
|                                         |             |                    |                    |                     | <b>2017</b> , <i>38</i> , 167  |
| Co/VN                                   | 1 M KOH     | 320                |                    | 55                  | Nano Energy                    |
|                                         |             |                    |                    |                     | <b>2017</b> , <i>34</i> , 1    |
|                                         | 1           |                    |                    | 1                   | 1                              |

 Table S2. UOR activity of different catalysts.

| Catalysts                                               | Electrolyte | Current             | Potential | Durability | Reference                                  |
|---------------------------------------------------------|-------------|---------------------|-----------|------------|--------------------------------------------|
|                                                         |             | density             | (V vs.    |            |                                            |
|                                                         |             | (mA cm <sup>-</sup> | RHE)      | (hours)    |                                            |
|                                                         |             | 2)                  |           |            |                                            |
| Ni <sub>3</sub> Se <sub>4</sub> nanorod                 | 1 M KOH     | 10                  | ~1.38     | 24         | Present work                               |
|                                                         | +0.1 M urea |                     |           |            |                                            |
| NiCo <sub>2</sub> O <sub>4</sub>                        | 1 M KOH +   | 136                 | ~1.77     |            | Nanoscale, <b>2014</b> , 6,                |
|                                                         | 0.33 M urea |                     |           |            | 1369                                       |
| Zn <sub>0.08</sub> Co <sub>0.92</sub> P/TM              | 1 M KOH +   | 115                 | ~1.62     |            | Adv. Energy Mater.                         |
|                                                         | 0.5 M urea  |                     |           |            | <b>2017</b> , <i>7</i> , 1700020           |
| Fe <sub>11.1%</sub> -Ni <sub>3</sub> S <sub>2</sub> /Ni | 1 M KOH +   | 10                  | ~1.44     | 20         | J. Mater. Chem. A,                         |
| foam                                                    | 0.33 M urea |                     |           |            | <b>2018</b> , <i>6</i> , 4346              |
| M-Ni(OH) <sub>2</sub>                                   | 1 M KOH +   | ~18                 | ~1.48     | 18         | Angew. Chem. Int.                          |
|                                                         | 0.33 M urea |                     |           |            | <i>Ed.</i> <b>2016</b> , <i>55</i> , 12465 |
| NF-G-Mn                                                 | 1 M KOH +   | ~8                  | ~1.37     | 16         | Angew. Chem. Int.                          |
|                                                         | 0.5 M urea  |                     |           |            | <i>Ed.</i> <b>2016</b> , <i>55</i> , 3804  |
| r-NiMoO <sub>4</sub>                                    | 1 M KOH +   | 249.5               | ~1.62     |            | ACS Catal. 2018, 8, 1                      |
|                                                         | 0.5 M urea  |                     |           |            |                                            |
| MnO <sub>2</sub> /MnCo <sub>2</sub> O <sub>4</sub> @    | 1 M KOH +   | 10                  | ~1.43     | 15         | J. Mater. Chem. A,                         |
| Ni                                                      | 0.5 M urea  |                     |           |            | <b>2017</b> , <i>5</i> , 7825              |
|                                                         |             |                     |           |            |                                            |