Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

~		- •	
Supp	orting	Infor	mation

Bio-inspired multiscale-pore-network structured carbon felt with enhanced mass transfer and activity for vanadium redox flow batteries

Qixing Wu, Xiangyang Zhang, Yunhui Lv, Liyu Lin, Xuelong Zhou*

Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China

Figure S1 Digital picture of the vanadium redox flow battery setups in this work.

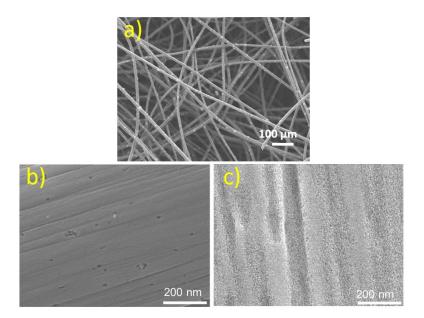
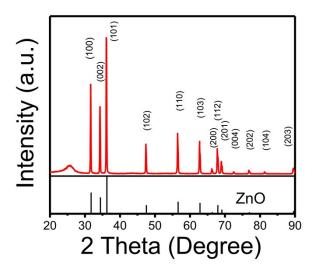
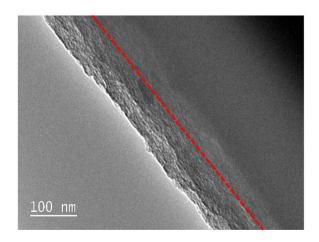
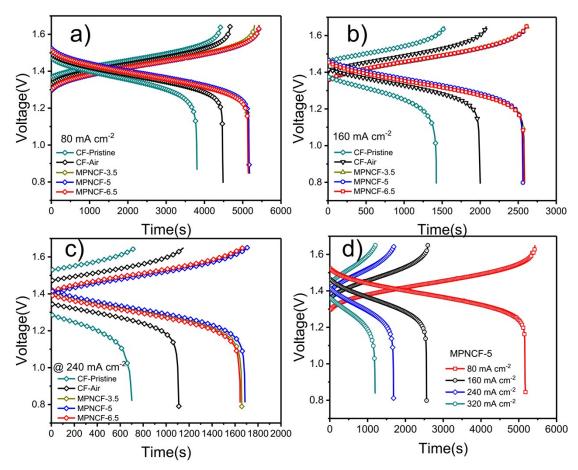
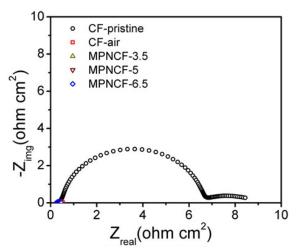
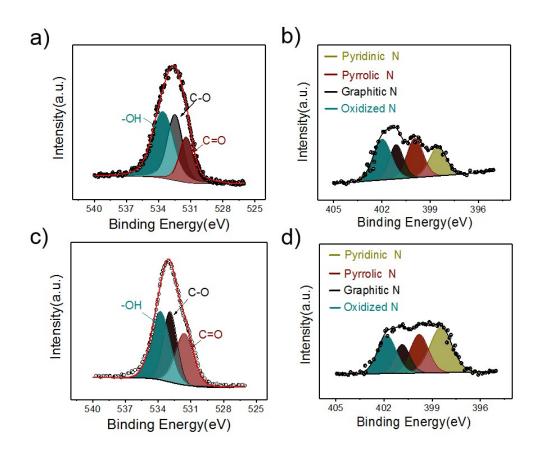



Figure S2 SEM images of a) CF-ZnO-5, b) CF-pristine and c) CF-air.

Figure S3 XRD patterns of CF-ZnO-5.


Figure S4 TEM image of MPNCF-5.

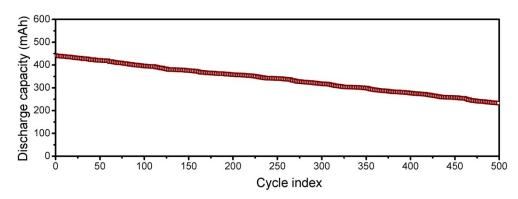

Figure S5 Charge-discharge curves of batteries with different types of electrodes at a) 80 mA cm⁻², b) 160 mA cm⁻², and c) 240 mA cm⁻²; d) charge-discharge curves of battery with MPNCF-5 at different current densities.

Figure S6 Electrochemical impedance spectra of batteries with different types of electrodes at various current densities

Figure S7 XPS results from MPNCF-5 electrodes (after cycling test) in the O 1s for the negative electrode (a), N 1s for the negative electrode (b), the O 1s for the positive electrode (c), and N 1s for the positive electrode (d).

Figure S8 Discharge capacity of battery with MPNCF-5 electrodes at 320 mA cm⁻² during 500 cycles.

 Table S1 Summary of performance of VRFB with improved electrode in the open literature

Electrode materials used	Feature	Current density (mA cm ⁻²)	Energy efficiency (%)	References
Carbon paper	WO_3	50	80.5	15
Carbon paper	CO_2	140	78.1	16
Graphite felt	Bi	150	78	17
Graphite felt	$\mathrm{Nb_2O_5}$	150	77.6	18
Graphite felt	ZrO_2	250	62.1	19
Graphite felt	Corn protein-derived carbon	150	68.6	20
Carbon paper	Mixed acid	40	65.4	21
Graphite felt	Sn	150	77.3	24
Carbon felt	Graphene-nanowall	125	76	28
Carbon felt	Multiscale pore- network structure	320	81.9	This work

 Table S2 Species concentrations of different electrodes obtained by XPS results.

Components	MPNCF-5	MPNCF-5 (500 Cycles)	MPNCF-5(500 Cycles)
components	WITHET 5	Negative side	Positive side
C 1s(%)	90.44	88.10	88.53
O 1s(%)	7.58	10.02	9.89
N 1s(%)	1.98	1.88	1.95
C=O(%)	2.43	1.75	1.86
C-O(%)	1.79	2.43	2.39
C-O-(%)	3.36	5.84	5.64