Supporting Information

Copper Manganese Oxide Enhanced Nanoarray-Based Monolithic Catalysts for Hydrocarbon Oxidation

Sheng-Yu Chen,^a Wenxiang Tang,^b Junkai He,^b Ran Miao,^a Hui-Jan Lin,^b Wenqiao Song,^a Sibo Wang,^b Pu-Xian Gao,^{*,b} and Steven L. Suib^{*,a,b}

^a Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs,

CT 06269-3060, USA

^b Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, CT 06269-3136, USA

Tel: +1 860 486 9213

E-mail: <u>steven.suib@uconn.edu</u> E-mail: <u>puxian.gao@uconn.edu</u>

Fig. S1. Cross-section SEM images of monolithic catalysts, (a) WC-CuMn₂O₄, (b) NA- $Co_{0.53}Cu_{0.47}Mn_2O_4$, (c) channel corner of WC-CuMn₂O₄, and (d) channel corner of NA- $Co_{0.53}Cu_{0.47}Mn_2O_4$.

Fig. S2. Schematic diagram and photo of the synthetic setup for the nanoarray-based monolithic catalysts using the mechanical stirring system.

Fig. S3. TEM images of manganese oxide nanorods with $CuMn_2O_4$ nanosheets for (a)NA-CuMn_2O_4, (b) NA-Co_{0.36}Cu_{0.64}Mn_2O_4, and (c) NA-Co_{0.53}Cu_{0.47}Mn_2O_4, and thezoom-inimages,(d)-(f),respectively.

Fig. S4. HAADF images and elemental mapping of Mn, Cu, and Co distribution for $CuMn_2O_4$ coated MnO_2 nanorods. Row (a) NA-Cu Mn_2O_4 , (b) NA- $Co_{0.36}Cu_{0.64}Mn_2O_4$,and(c)NA- $Co_{0.53}Cu_{0.47}Mn_2O_4$,respectively.

Fig. S5. C_3H_8 conversion of nanoarray-based catalysts, NA-CuMn₂O₄, with different gas hourly space velocity (GHSV), 18,000, 24,000, and 30,000 h⁻¹.

Fig. S6. C_3H_8 conversion of the three nanoarray-based catalysts at 375 °C and GHSV of 24,000 h⁻¹.