1	Electronic Supplementary Information
2	
3	Rhombic Porous CoP₂ Nanowire Arrays Synthesized by Alkaline
4	Etching as Highly Active Hydrogen-Evolution-Reaction
5	Electrocatalysts
6	
7	Yi Zhou, Yuying Yang,* Ruijing Wang, Xiaotong Wang, Xinyuan Zhang, Lulu Qiang, Wenbin
8	Wang, Qian Wang, Zhongai Hu*
9	
10	Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key
11	Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical
12	Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China. *E-mail:
13	490230698@qq.com (Y. Yang); zhongai@nwnu.edu.cn(Z. Hu).; Fax: +86 931 8859764; Tel: +86
14	931 7973255
15	

Fig. S1. XRD pattern of (a) CC; (b) Co_xZn_{1-x}OHF/CC; (c) Co₂O₃@ZnO/CC.

4 Fig. S2. SEM image of (a) Untreated Carbon Cloth, (b) Electro-etched of Carbon Cloth.

7

6 **Fig. S3.** SEM image of (a)CoP₂/CC -1, (b)CoP₂/CC -2, (c)CoP₂/CC -3, (d)CoP₂/CC -4, (e)

 CoP_2/CC -5 and (f) CoP_2/CC -0.

Fig. S4. (a) TEM image of $Co_xZn_{1-x}OHF$; (b, c) TEM image of $Co_2O_3@ZnO$; (d) Element

mapping of the Co₂O₃@ZnO.

5 **Fig. S5.** (a) Nitrogen adsorption-desorption isotherm and (b) pore size distribution plot of CC,

6

Co_xZn_{1-x}OHF/CC, Co₂O₃@ZnO/CC and CoP₂/CC samples.

7 The porous structure of the samples is further determined by a N_2 8 adsorption-desorption test. As shown in Fig. S5(a), the typical type-IV isotherm with

a distinct hysteresis loop was observed for CoP₂/CC catalyst, indicating abundant 1 mesoporous structure.¹⁸ The BET surface area of CC, Co_xZn_{1-x}OHF/CC, 2 Co₂O₃@ZnO/CC and CoP₂/CC are 0.9252, 4.8070, 6.8028 and 9.5234 m² g⁻¹. 3 Obviously, an increase of BET surface area from 6.8028 m² g⁻¹ (Co₂O₃@ZnO/CC) to 4 9.5234 m² g⁻¹ (CoP₂/CC) was observed, indicating that the alkaline etching of 5 Co₂O₃@ZnO/CC to remove the ZnO matrix obviously increases the surface area of 6 Moreover, the hierarchical porous configuration of the samples is also CoP_2/CC . 7 confirmed by the pore size distribution plot, as shown in Fig. S5(b). The 8 meso/macropores of CC was obvised. The micropores of Co_xZn_{1-x}OHF/CC, 9 Co₂O₃@ZnO/CC and CoP₂/CC are centered at around 1.27, 1.27, and 1.48 nm, 10 respectively. The two region mesopores of Co_xZn_{1-x}OHF/CC, Co₂O₃@ZnO/CC and 11 12 CoP₂/CC are centered at around 2.52 and 2.73, 2.73 and 4.66, 2.73 and 5.04 nm, respectively. It is obviously observed that CoP2/CC shows a relatively abundant 13 micropores. This result is consistent with TEM image of Fig.2 and Fig.S4. The porosity 14 of CoP₂/CC catalyst is beneficial for mass transport for electrocatalysis.¹⁹ 15

17 **Fig. S6.** (a)LSV curves, (b) Tafel plots, and (c) ECSA of CoP₂/CC-4 at different anneling rate in

 $0.5M H_2SO_4$ solution.

2 Fig. S7. (a)LSV curves, (b) Tafel plots, and (c) ECSA of CoP₂/CC-4 at different anneling rate in

3

1M KOH solution.

- **Table S1.** Comparison of HER performance in acidic electrolytes for CoP₂/CC-4 with other HER

electrocatalysts.

Catalysts	η _j (mV)	j (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	exchange current density (mA cm ⁻²)	Loading mass (mg cm ⁻²)	Ref.
Co ₂ P@C/CC	103	10	40.8	0.29	-	1
MoP/RGO	118	20	58	0.201	-	2
CoS/CC	212	10	112	-	3.5	3
CoP-NTs	152	10	50	-	0.35	4
MoS ₂ /G-20	110	10	67.4	0.14	-	5
Mo ₂ C nanotube	172 197	10 20	62	0.017	-	6
CoP ₃ CPs	78	10	53	0.209	-	7
Co/CoP-5	178 195	10 20	59.1	-	0.88	8
HNDCM-Co/CoP	135	10	64	-	-	9
Ni ₂ P–CoP	105	10	64	-	-	10
Co ₂ P/Ti	95 109	10 20		-	1	11
CoP@NC	78	10	49	-	0.306	12
CoP/CC	67 100	10 20	51	0.288	0.92	13
mp-Ni ₂ P/Ni foam	140	20	68.9	-	2	14
CoP ₂ /CC-4	56 86	10 20	67	1.5348	4.69	This work

- **Table S2.** Comparison of HER performance in alkaline electrolytes for CoP₂/CC-4 with other

HER electrocatalysts.

Catalysts	η _j (mV)	j (mA cm ⁻²)	Tafel slope (mVdec ⁻¹)	exchange current density (mA cm ⁻²)	Loading mass (mg cm ⁻²)	Ref.
Co-B@CoO/Ti	61	10	78	-	4.87	15
Fe-Doped CoP	78	10	75	-	1.03	16
CoS/CC	197	10	105	-	3.5	3
f-CoP/CoP ₂ /Al ₂ O ₃	300	10	73	-	0.2	17
Co/CoP-5	253	10	73.8	-	0.88	8
HNDCM-Co/CoP	135	10	64	-	-	9
Co ₂ P/Ti	95	10		-	1	11
	109	20				
CoP@NC	129	10	58	-	0.306	12
CoP/CC	209	10	129	0.288	0.92	13
mp-Ni ₂ P/Ni foam	140	20	68.9	-	2	14
CoP ₂ /CC-4	72	10	88	1.1236	4.69	This
	114	20				work

1 References

- C. Ye, M. Q. Wang, G. Chen, Y. H. Deng, L. J. Li, H. Q. Luo and N. B. Li, *Journal of Materials Chemistry A* 2017, 5, 7791-7795.
- 4 2. G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu and J. Li, *Journal of the American Chemical Society*, 2016, 138, 14686-14693.
- 6 3. N. Li, X. Liu, G.-D. Li, Y. Wu, R. Gao and X. Zou, *International Journal of Hydrogen Energy*, 2017, 42, 99149921.
- 8 4. Y. E. Miao, F. Li, Y. Zhou, F. Lai, H. Lu and T. Liu, *Nanoscale*, 2017, 9, 16313-16320.
- 9 5. L. Ma, Y. Hu, G. Zhu, R. Chen, T. Chen, H. Lu, Y. Wang, J. Liang, H. Liu, C. Yan, Z. Tie, Z. Jin and J. Liu, *Chemistry of Materials*, 2016, 28, 5733-5742.
- 11 6. F. X. Ma, H. B. Wu, B. Y. Xia, C. Y. Xu and X. W. Lou, Angewandte Chemie, 2015, 54, 15395-15399.
- T. L. Wu, M. Y. Pi, X. D. Wang, D. K.Zhang and S. J. Chen, *Physical Chemistry Chemical Physics*. 2017, 19, 2104-2110.
- Z.-H. Xue, H. Su, Q.-Y. Yu, B. Zhang, H.-H. Wang, X.-H. Li and J.-S. Chen, *Advanced Energy Materials*, 2017, 7, 1602355.
- H. Wang, S. Min, Q. Wang, D. Li, G. Casillas, C. Ma, Y. Li, Z. Liu, L. J. Li, J. Yuan, M. Antonietti and T. Wu, *ACS nano*, 2017, **11**, 4358-4364.
- 18 10. X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang and B. Chen, ACS applied materials & interfaces, 2017, 9,
 23222-23229.
- 11. J. F. Callejas, C. G. Read, E. J. Popczun, J. M. McEnaney and R. E. Schaak, *Chemistry of Materials*, 2015, 27, 3769-3774.
- 22 12. F. Yang, Y. Chen, G. Cheng, S. Chen and W. Luo, ACS Catalysis, 2017, 7, 3824-3831.
- 23 13. J. Tian, Q. Liu, A. M. Asiri and X. Sun, Journal of the American Chemical Society, 2014, 136, 7587-7590.
- 14. X. D. Wang, Y. Cao, Y. Teng, H. Y. Chen, Y. F. Xu and D. B. Kuang, *ACS applied materials & interfaces*,
 2017, 9, 32812-32819.
- 26 15. W. Lu, T. Liu, L. Xie, C. Tang, D. Liu, S. Hao, F. Qu, G. Du, Y. Ma, A. M. Asiri and X. Sun, *Small*, 2017, 13.
- 27 16. C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri and X. Sun, *Advanced materials*, 2017, 29.
- 28 17. W. Li, S. L. Zhang, Q. N. Fan, F. Z. Zhang and S. L. Xu, Nanoscale, 2017, 9 (17), 5677-5685.
- 29 18. X. T. Wang, Y. Y. Yang, Q. C. Zhang, X. Yang, Z. A. Hu, The Journal of Physical Chemistry C, 2018, 122(12):
 30 6526-6538.
- 31 19. Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C.
- 32 Chen and Y. Li, Journal of the American Chemical Society, 2018, 140, 2610-2618.
- 33