Journal Name

Supporting information

Self-assembled 3D flower-like Fe₃O₄/C architecture with superior lithium ion storage performance

Lijia Wan,^a Dong Yan,^a Xingtao Xu,^a Jiabao Li,^a Ting Lu,^a Yang Gao,^{*b} Yefeng Yao^a and Likun Pan^{*a}

^aShanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 20 0062, China, *E-mail: <u>lkpan@phy.ecnu.edu.cn</u>.

^bSchool of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China, *E-mail: <u>yanggao@ecust.edu.cn.</u>

Fig. S1 Fe 2p XPS spectrum of flower-like Fe₃O₄/C precursor.

Fig. S2 Photograph of (a) Fe₃O₄/C precursor reaction solution and (b) flower-like Fe₃O₄/C precursor.

Fig. S3 (a) FTIR spectrum and (b) XRD pattern of flower-like Fe₃O₄/C precursor.

Fig. S4 (a) TG and DTG of flower-like Fe₃O₄/C precursor.

Journal Name

Fig. S5 FESEM images of (a, c) Fe₃O₄/C-350 and (b, d) Fe₃O₄/C-500 at different magnifications.

Fig. S6 FESM images of (a) $Fe_3O_4/C-350$, (b) $Fe_3O_4/C-400$, and (c) $Fe_3O_4/C-500$ electrodes after 300 cycles.

Samples	Material	I _G /I _D	BET surface	Mean pore	R _{ct}
	_		area	diameter	
			(m² g⁻¹)	(nm)	(Ω)
1	Fe ₃ O ₄ /C-350	1.32	86.04	3.412	120
2	Fe ₃ O ₄ /C-400	1.25	107.84	3.883	36.7
3	Fe ₃ O ₄ /C-500	1.41	84.43	3.407	60.8

Table S1 Testing parameters of Fe $_3O_4/C$ -350, Fe $_3O_4/C$ -400, and Fe $_3O_4/C$ -500.

Anode	Initial	Reversible	Current	Cycle	Capacity	Refs.
	Coulombic	Specific	Density	number	retention	
	Efficiency	Capacity			rate	
	(%)	(mAh g⁻¹)	(mA g ⁻¹)	(cycles)	(%)	
Fe₃O₄/C nanotubes	-	600	139	100	82.5	Ref. S1
Fe ₃ O ₄ /C microrods	-	~ 650	200	100	~83	Ref. S2
Graphene-wrapped						
Fe₃O₄/graphene	<67	708	400	300	88.5	Ref. S3
nanoribbons						
2D carbon encapsulated	66	1064	500	100	98.4	Ref. S4
hollow Fe ₃ O ₄						
nanoparticles						
Graphene nanosheets	65	724.7	300	300	62.4	Ref. S5
encapsulated Fe ₃ O ₄						
octahedral						
Fe₃O₄/graphene	60	1070	200	160	86.3	Ref. S6
composites						
Graphene-doped						
carbon/Fe ₃ O ₄ porous	74.4	872	100	100	83	Ref. S7
nanofibers						
Flower-like Fe ₃ O ₄ /C-400	80.0	1165.4	277.2	300	98	This work

 Table S2 Lithium-storage performance of Fe₃O₄/C-400 in this work compared with other reported Fe₃O₄-based anode materials in the literatures.

Table S3 Comparison of lithium storage performance of $Fe_3O_4/C-400$ in this work and various flower-like anode materials reportedin the literatures.

Material	Cell	Reversible Specific Capacity	Current Density	Cycle number	Refs.
	(type)	(mAh g ⁻¹)	(mA g ⁻¹)	(cycles)	
α-Fe ₂ O ₃	Li-ion	1069	50	25	Ref. S8
SnS₂	Li-ion	432~519	100	50	Ref. S9
Co ₃ O ₄ /C	Li-ion	1085.2	200	100	Ref. S10
graphene-embedded Co ₃ O ₄	Li-ion	990.8	90	100	Ref. S11
SnS ₂ /Co ₃ O ₄	Li-ion	~715	100	100	Ref. S12
NiO/Ni	Li-ion	846	1000	100	Ref. S13
S/graphene	Li-S	1020	335	900	Ref. S14
SnFe ₅ (PO ₄) ₄ (OH) _{3.2} ·H ₂ O/graphene	Li -ion	1000	100	100	Ref. S15
Fe ₃ O ₄ /C-400	Li-ion	1165.4	277.2	300	This work

References

[S1] H. Luo, K. Huang, B. Sun and J. Zhong, *Electrochim. Acta*, 2014, **149**, 11-17.

- [S2] Y. Wang, L. Zhang, X. Gao, L. Mao, Y. Hu and X. W. Lou, Small, 2014, 10, 2815-2819.
- [S3] L. Li, A. Kovalchuk, H. Fei, Z. Peng, Y. Li, N.D. Kim, C. Xiang, Y. Yang, G. Ruan, J.M. Tour, Adv. Energy Mater., 2015, 5. 1500171.
- [S4] F,-X. Ma, H. Hu, H. B. Wu, C,-Y. Xu, Z. C. Xu, L. Zhen and X. W. Lou, Adv. Mater., 2015, 27, 4097-4101.
- [S5] J. Ye, Q. Hao, B. Liu, Y. Li and C. Xu, Chem. Eng. J., 2017, **315**, 115-123.
- [S6] Y. Dong, K. C. Yung, R. Ma, X. Yang, Y.-S. Chui, J-M. Lee and J. A. Zapien, Carbon, 2015, 86, 310-317.
- [S7] J. He, S. Zhao, Y. Lian, M. Zhou, L. Wang, B. Ding and S. Cui, *Electrochim. Acta*, 2017, 229, 306-315.
- [S8]T. R. Penki, S. Shivakumara, M. Minakshi and N. Munichandraiah, Electrochim. Acta, 2015, 167, 330-339.
- [S9] D. Guan, J. Li, X. Gao, Y. Xie and C. Yuan, J. Alloys Compd., 2016, 658, 190-197.
- [S10] W. Liu, H. Yang, L. Zhao, S. Liu, H. Wang and S. Chen, *Electrochim. Acta*, 2016, 207, 293-300.

[S11] M. Jing, M. Zhou, G. Li, Z. Chen, W. Xu, X. Chen and Z. Hou, ACS Appl. Mater. Interfaces, 2017, 9, 9662-9668.

- [S12] Y. Zhu, Y. Chu, J. Liang, Y. Li, Z. Yuan, W. Li, Y. Zhang, X. Pan, S-L. Chou, L. Zhao and R. Zeng, *Electrochim. Acta*, 2016, **190**, 843-851.
- [S13] G. H. Yue, Y. C. Zhao, C. G. Wang, X. X. Zhang, X. Q. Zhang and Q. S. Xie, *Electrochim. Acta*, 2015, **152**, 315-322.
- [S14] H. Chen, C. Chen, Y. Liu, X. Zhao, N. Ananth, B. Zheng, L. Peng, T. Huang, W. Gao and C. Gao, *Adv. Energy Mater.*, 2017, **7**, 1700051.
- [S15] V. Mani, G. N. Suresh babu and N. Kalaiselvi, J. Power Sources, 2018, 395, 31-40.