Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information for

MOF-Derived Porous Ni₂P Nanosheets as Novel Bifunctional Electrocatalysts for

Hydrogen and Oxygen Evolution Reaction

Fig. S1 XRD patterns of NiO and NiO-MOF-74 nanosheets.

Fig. S2 SEM image of NiO-MOF-74 nanosheets.

Fig. S3 Pore size distribution of NiO and NiO-MOF-74 nanosheets.

Fig. S4 TEM-EDS spectrum of the NiO-MOF-74.

Fig. S5 XRD patterns of Ni₂P and porous Ni₂P nanosheets.

Fig. S6 High-magnified TEM images of porous Ni₂P nanosheets.

Fig. S7 (a) SEM and (b) TEM images of Ni_2P nanosheets.

Fig. S8 TEM-EDS spectrum of the porous Ni₂P nanosheets.

Fig. S9 Pore size distribution of the Ni₂P and porous Ni₂P nanosheets.

Fig. S10 (a) XRD pattern, (b) TEM image and (c,d) HRTEM images of porous Ni₂P nanosheets after 10 h OER stability test. (e) XPS signals of Ni 2p for the porous Ni₂P nanosheets after 10 h OER stability test.

Fig. S11 Voltammograms of the (a) NiO, (b) NiO-MOF-74, (c) pristine Ni_2P and (d) porous Ni_2P nanosheets electrocatalysts at various scan rates (20-160 mV s⁻¹).

Fig. S12 Capacitive current at 0.05 V (vs RHE) as a function of scan rate for NiO, NiO-MOF-74, pristine Ni₂P and porous Ni₂P nanosheets.

Fig. S13 (a) LSV curves of overall water splitting in a two-electrode system. The inset is the digital photo of H_2 and O_2 bubbles. (b) The stability of water splitting at a cell voltage of 1.52 V for 10 h. (c) Enlarged digital photo of H_2 and O_2 bubbles.

catalyst	Overpotential	Tafel Slope	Electrolyte	Reference
	(10 mA cm ⁻²)	(mV dec ⁻¹)		
MOF derived	168 (HER) 320 (OEB)	63 (HER)	1.0 M KOH	Our work
porous M ₂ r MS	320 (OEK)	105 (OEK)		
MOF derived	184 (HER)	67 (HER)	0.5 M H ₂ SO ₄	ACS Appl. Mater.
Ni ₂ P/CoP NP	360 (OER)	72 (OER)	0.1 M KOH	Interfaces 2017, 9 , 23222
MOF derived	310 (HER)	73 (HER)	$0.5 \mathrm{~M~H_2SO_4}$	ACS Appl. Mater.
Ni ₂ P polyhedrons	s			<i>Interfaces</i> 2017, 9 , 11642
Ni–Fe–P porous	233 (HER)	101.2 (HER)	1.0 M KOH	J. Mater. Chem. A
Nanorods	256 (OER)	72.6 (OER)	1.0 M KOH	2017, 5 , 2496
MOF derived	223 (HER)	66 (HER)	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	J. Mater. Chem. A
Ni/Ni ₂ P/Mo ₂ C@	C 368 (OER)	75 (OER)	1.0 M KOH	2018, 6 , 5789
Ni ₂ P-CeO ₂ nanosheet	131 (HER)	87 (HER)	1.0 M KOH	<i>Inorg. Chem.</i> 2018, 57 , 548
NiS/Ni ₂ P	158 (HER)	78.1 (HER)	0.5 M H ₂ SO ₄	ACS Appl. Mater.
Heterostructure	335 (OER)	101.1 (OER)	1.0 M KOH	<i>Interfaces</i> 2018, 10 , 4689
MOF derived Ni ₂ P nanoparticle	380 (HER) e	270 (HER)	0.5 M H ₂ SO ₄	<i>RSC Adv.</i> 2015, 5 , 10290

Table S1 Summary of the HER and OER performance using Ni_2P nanostructures as electrocatalysts.

Porous Ni ₂ P	221 (HER)	91 (HER)	1.0 M KOH	ACS Catal. 2016,
Superstructure	400 (OER)	132 (OER)	1.0 M KOH	6 , 714
Ni ₂ P nanosheet	185 (HER)	138 (HER)	0.5 M H ₂ SO ₄	<i>Chem. Commun.,</i> 2017, 53 , 11048
Ni ₂ P Hollow Microsphere	214 (HER) 359 (OER)	125.4 (HER) 71.7 (OER)	1.0 M KOH 1.0 M KOH	Chem. Mater. 2017, 29 , 8539