ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atom embedded in defective graphitic carbon nitride

Xingzhu Chen,^a Xiujian Zhao,^a Zhouzhou Kong,^a Wee-Jun Ong^{*b} and Neng Li^{*a}

^a State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei, 430070, China

^b Department of Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Malaysia

* Corresponding authors:

E-mail: lineng@whut.edu.cn (N. Li), Tel.: +86-027-87652553

E-mail: weejun.ong@xmu.edu.my; ongweejun@gmail.com (W.-J. Ong), Tel.: (+603) 8705 5149

Contents	Pages
Additional Computational Details	S2
Additional Computational Results of g-C ₃ N ₄ and NVs-g-C ₃ N ₄	S3-S6
Additional Computational Results of TM@NVs-g-C ₃ N ₄	S7, S11
Computation of Gibbs Free Energies and Reaction Barrier	S8-S10
Ab-initio Molecular Dynamics Simulation of Ti@NVs-g-C ₃ N ₄	S12
DOS of Ti@NVs-g-C ₃ N ₄	S13

ADDITIONAL COMPUTATIONAL DETAILS

Settings for DFT-D3 geometry optimisation

ISTART = 0ISYM = 0ENCUT = 520PREC = MediumEDIFF = 1E-4EDIFFG = -0.05NSW = 200ISIF = 2ISPIN = 2ISMEAR = -5IBRION = 2POTIM = 0.5LCHARG = .FALSE. LWAVE = .FALSE.LREAL = AUTO#DFTD3 IVDW = 11

Pseudo-potentials applied:

C: PAW_PBE C 08Apr2002 N: PAW_PBE N 08Apr2002 H: PAW_PBE H 15Jun2001 Ti: PAW_PBE Ti_sv 07Sep2000 V: PAW_PBE V_sv 07Sep2000 Fe: PAW_PBE Fe_sv 23Jul2007 Co: PAW_PBE Co_sv 23Jul2007 Co: PAW_PBE Ni 02Aug2007 Cu: PAW_PBE Ni 02Aug2007 Cu: PAW_PBE Cu 22Jun2005 Zr: PAW_PBE Zr_sv 07Sep2000 Mo: PAW_PBE Mo_sv 02Feb2006 Ru: PAW_PBE Mo_sv 02Feb2006 Ru: PAW_PBE Pd_pv 28Jan2005 Pd: PAW_PBE Pt 04Feb2005

Fig. S1 (a) Total energy and lattice parameter of $g-C_3N_4$ in 2 × 2 supercell during 30 ps at 300 K, the molecular dynamics simulation was carried out with a universal force field as implemented in Forcite code. (b) The planar and (c) corrugated structures of $g-C_3N_4$.

Supercell	Total energy per unit cell (eV)
2×2	-118.91
3×3	-119.01
4×4	-119.09
5×5	-119.11

Table S1 Computed total energies per unit cell of corrugated $g-C_3N_4$ using different supercell sizes.

Fig. S2 The calculated density of state for planar and corrugated $g-C_3N_4$ with the hybrid HSE06 functional.

N vacancy type	Formation energy (eV)
Туре І	3.92
Type II	1.35
Type III	2.03

Table S2 Computed formation energies ($E_{\text{formation}}$) for three types of N vacancy in g-C₃N₄ with the following equation: $E_{\text{formation}} = E (\text{NV-g-C}_3\text{N}_4) - [E (\text{g-C}_3\text{N}_4) - \frac{1}{2}E (\text{N}_2)].$

Fig. S3 The sum of binding energy and cohesive energy (per atom) for various TM. Cohesive energy per atom is calculated using the equation of $E_c = 1/n [E(Metal) - nE(TM)]$, where n represents the number of atoms in an unit metal crystal.

Table S3 Gibbs free energies at 298.15 K in eV, corresponding to the isolated N_2 , H_2 , and NH_3 , and the different adsorbed states along the N_2 reduction pathway catalyzed by Ti and V@NVs-g- C_3N_4 .

	Species	<i>G</i> (PBE) / eV	
	N_2	-17.09	
	H_2	-6.90	
	NH_3	-19.18	
Catalyst	Ti@g-C ₃ I	N_4	V@g-C ₃ N ₄
Clean	-473.58		-474.31
N_2	-491.24		-491.42
*NNH	-494.41		-494.33
*NHNH	-497.97		-497.86

-497.91

-501.92

-505.00

-506.75

-490.81

-494.32

-497.65

-502.27

-504.99

-506.44

-491.14

-494.08

*NNH₂

*NHNH₂

*NH₂NH₂

*NH+*NH3

 $*NH_2$

*NH₃

Table S4 Gibbs free energies calculated by revPBE (*G* (revPBE)) at 298.15 K in eV, corresponding to the isolated N₂, H₂, and NH₃, and the different adsorbed states along the N₂ reduction pathway catalyzed by Ti@NVs-g-C₃N₄.

Species	G (revPBE) / eV	
N ₂	-17.64	
H_2	-7.16	
NH ₃	-19.73	
Catalyst	Ti@g-C ₃ N ₄	
Clean	-479.44	
$*N_2$	-497.44	
*NNH	-500.62	
*NHNH	-504.21	
*NNH ₂	-503.98	
*NHNH ₂	-508.59	
*NH ₂ NH ₂	-511.39	
*NH+*NH ₃	-513.03	
*NH ₂	-497.26	
*NH ₃	-500.25	

Note: Computation of activation barriers

We employed a method developed by Janik et al. to determine the potential-dependent activation barriers along an electrocatalytic reaction pathway.¹ The activation barriers for the non-electrochemical reactions are extrapolated to the potential-dependent system using the following equation:

$$G_{\rm act}(U) = G^0_{act} + F\beta(U - U_0)$$

Where G_{act}^{0} is the activation barrier for the non-electrochemical hydrogenation reaction; *U* is the applied electrode potential, which is set to 0; β is symmetry coefficient, approximately equals to 0.5 for all steps; U_0 is the equilibrium potential for the reductive adsorption of a proton, which equals to the energy of the (*Adsorbate + *H•) reactants to (*Adsorbate + H⁺ + e⁻).

Transition State	G _{act}
TS1	0.57
TS2	0.27
TS3	-
TS4	0.49
TS5	0.23

Fig. S4 Optimized geometry structures of (a) Cu and (b) Pd supported by NVs-g-C₃N₄ after 4-ps *ab*-initio molecular dynamics simulations.

Table S5 The adsorption free energy and the N-N bond length of N_2 on Cu and Pd@NVs-g- C_3N_4 (the horizontal-configuration N_2 adsorption cannot exist in the Cu and Pd embedded NVs-g- C_3N_4).

	Cu@NVs-g-C ₃ N ₄	Pd@NVs-g-C ₃ N ₄
Adsorption free energy	-0.06 eV	-0.11 eV
N-N bond length	1.123 Å	1.123 Å

Fig. S5 Variation of (a) temperature and (b) total energy for single Ti atom supported by NVs-g- C_3N_4 during ab-initio molecular dynamics simulation from 10 to 20 ps at 400 K.

Fig. S6 Calculated total and partial density of state for Ti@ NVs-g-C₃N₄.

Reference

1. X. Nie, M. R. Esopi, M. J. Janik and A. Asthagiri, Angew. Chem. Int. Ed., 2013, 52, 2459-2462.