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S2 

ADDITIONAL COMPUTATIONAL DETAILS 

Settings for DFT-D3 geometry optimisation 

  ISTART = 0 

  ISYM = 0 

  ENCUT = 520 

  PREC = Medium 

  EDIFF = 1E-4 

  EDIFFG = -0.05 

  NSW = 200 

  ISIF = 2 

  ISPIN = 2 

  ISMEAR = -5 

  IBRION = 2 

  POTIM = 0.5 

  LCHARG = .FALSE. 

  LWAVE = .FALSE. 

  LREAL = AUTO 

  # DFTD3 

  IVDW = 11 

Pseudo-potentials applied: 

C: PAW_PBE C 08Apr2002 

N: PAW_PBE N 08Apr2002 

H: PAW_PBE H 15Jun2001 

Ti: PAW_PBE Ti_sv 07Sep2000 

V: PAW_PBE V_sv 07Sep2000 

Fe: PAW_PBE Fe_sv 23Jul2007 

Co: PAW_PBE Co_sv 23Jul2007 

Ni: PAW_PBE Ni 02Aug2007 

Cu: PAW_PBE Cu 22Jun2005 

Zr: PAW_PBE Zr_sv 07Sep2000 

Mo: PAW_PBE Mo_sv 02Feb2006 

Ru: PAW_GGA Ru_sv 28Jan2005 

Pd: PAW_PBE Pd_pv 28Jan2005 

Pt: PAW_PBE Pt 04Feb2005 
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Fig. S1 (a) Total energy and lattice parameter of g-C3N4 in 2 × 2 supercell during 30 ps at 300 K, 

the molecular dynamics simulation was carried out with a universal force field as implemented in 

Forcite code. (b) The planar and (c) corrugated structures of g-C3N4. 
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Table S1 Computed total energies per unit cell of corrugated g-C3N4 using different supercell 

sizes. 

 

Supercell Total energy per unit cell (eV) 

2 × 2 -118.91 

3 × 3 -119.01 

4 × 4 -119.09 

5 × 5 -119.11 
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Fig. S2 The calculated density of state for planar and corrugated g-C3N4 with the hybrid HSE06 

functional. 
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Table S2 Computed formation energies (Eformation) for three types of N vacancy in g-C3N4 with 

the following equation: Eformation = E (NV-g-C3N4) – [E (g-C3N4) – ½ E (N2)]. 

 

N vacancy type Formation energy (eV) 

Type I 3.92 

Type II 1.35 

Type III 2.03 
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Fig. S3 The sum of binding energy and cohesive energy (per atom) for various TM. Cohesive 

energy per atom is calculated using the equation of Ec = 1/n [E(Metal) – nE(TM)], where n 

represents the number of atoms in an unit metal crystal. 
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Table S3 Gibbs free energies at 298.15 K in eV, corresponding to the isolated N2, H2, and NH3, 

and the different adsorbed states along the N2 reduction pathway catalyzed by Ti and V@NVs-g-

C3N4.  

Species G (PBE) / eV 

N2 -17.09 

H2 -6.90 

NH3 -19.18 

 

Catalyst Ti@g-C3N4 V@g-C3N4 

Clean -473.58  -474.31  

*N2 -491.24  -491.42  

*NNH -494.41  -494.33  

*NHNH -497.97  -497.86  

*NNH2 -497.65  -497.91  

*NHNH2 -502.27  -501.92  

*NH2NH2 -504.99  -505.00  

*NH+*NH3 -506.44  -506.75  

*NH2 -491.14  -490.81  

*NH3 -494.08  -494.32  
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Table S4 Gibbs free energies calculated by revPBE (G (revPBE)) at 298.15 K in eV, 

corresponding to the isolated N2, H2, and NH3, and the different adsorbed states along the N2 

reduction pathway catalyzed by Ti@NVs-g-C3N4.  

Species G (revPBE) / eV 

N2 -17.64 

H2 -7.16 

NH3 -19.73 

 

Catalyst Ti@g-C3N4 

Clean -479.44  

*N2 -497.44  

*NNH -500.62  

*NHNH -504.21  

*NNH2 -503.98  

*NHNH2 -508.59  

*NH2NH2 -511.39  

*NH+*NH3 -513.03  

*NH2 -497.26  

*NH3 -500.25  
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Note: Computation of activation barriers 

We employed a method developed by Janik et al. to determine the potential-dependent activation 

barriers along an electrocatalytic reaction pathway.
1
 The activation barriers for the non-

electrochemical reactions are extrapolated to the potential-dependent system using the following 

equation: 

 

Gact(U) = G0
act + Fβ(U – U0) 

 

Where G0
act is the activation barrier for the non-electrochemical hydrogenation reaction; U is the 

applied electrode potential, which is set to 0; β is symmetry coefficient, approximately equals to 

0.5 for all steps; U0 is the equilibrium potential for the reductive adsorption of a proton, which 

equals to the energy of the (*Adsorbate + *H•) reactants to (*Adsorbate + H
+
 + e

–
).  

 

 

 

Transition State Gact 

TS1 0.57 

TS2 0.27 

TS3 - 

TS4 0.49 

TS5 0.23 
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Fig. S4 Optimized geometry structures of (a) Cu and (b) Pd supported by NVs-g-C3N4 after 4-ps 

ab-initio molecular dynamics simulations. 

 

 

 

Table S5 The adsorption free energy and the N-N bond length of N2 on Cu and Pd@NVs-g-

C3N4 (the horizontal-configuration N2 adsorption cannot exist in the Cu and Pd embedded NVs-

g-C3N4).  

 Cu@NVs-g-C3N4 Pd@NVs-g-C3N4 

Adsorption free energy -0.06 eV -0.11 eV 

N-N bond length 1.123 Å 1.123 Å 
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Fig. S5 Variation of (a) temperature and (b) total energy for single Ti atom supported by NVs-g-

C3N4 during ab-initio molecular dynamics simulation from 10 to 20 ps at 400 K.  
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Fig. S6 Calculated total and partial density of state for Ti@ NVs-g-C3N4. 
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