Supporting Informations

Metallic Layered Germanium Phosphide GeP₅ for High Rate Flexible All-Solid-State Supercapacitors

Bingchao Yang,^a Anmin Nie,^{*a} Yukai Chang,^a Yong Cheng,^b Fusheng Wen,^{*a} Jianyong Xiang,^a Lei Li,^c Zhongyuan Liu,^{*a} and Yongjun Tian^a

^aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinghuangdao 066004, China ^bDepartment of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China ^cNorthwest Institute for Non-ferrous Metal Research, Xian 710016, China

Figure S1 Optical Photographs of GeP_5 crystal piece used for temperature dependent electrical conductivity measurement. (a) Side view of the GeP_5 crystal piece. The thickness of the piece is about 1.1 mm. (b) The top view of the GeP_5 crystal piece.

Figure S2 AFM characterization of the GeP_5 nanoflakes. (a) Representative AFM images of the GeP_5 nanoflakes. (b) The corresponding height profiles of the GeP_5 nanoflakes.

Figure S3 (a) Cross-section SEM image for GeP₅ film with a \sim 0.74 µm thickness composed by liquid-exfoliated GeP₅ nanoflakes. (b-d) Different magnification optical photographs showing the surface morphology of the GeP₅ film.

Figure S4 Resistivity test of GeP_5 film at room temperature in the voltage window from -1 to +1 V.

Figure S5 CV curves of the GeP₅ ASSP device at various scan rates range from 0.005 to 0.05 (a), 0.1 to 0.7 (b), 10 to 70 (c), and 100 to 500 V s⁻¹ (d), respectively.

Figure S6 Plot of the discharge current density as a function of the scan rate for GeP₅ ASSP.

Figure S7 The gravimetric capacitance of GeP₅ ASSPs at different scan rates.

Figure S8 GCD curves at current density of 0.8 A cm⁻³ with a IR drop of 15 mV.

Figure S9 The photograph of flexible GeP₅ ASSP under different bending states (0 to 180°). 0° (a), 30° (b), 60° (c), 90° (d), 120° (e) and 180° (f).

Figure S10 CV curves (a) and capacitances ratio (b) of GeP₅ ASSP exposed to air for a week.

Figure S11 EIS of GeP₅ ASSP device. Inset shows the high frequency range part.

Figure S12 Capacitance retention of GeP₅ ASSP device at ultrahigh scan rate of 100 V s⁻¹ after 5 000 cycles. Inset shows CV curves of the 1st cycle and 5 000th cycle.

Figure S13 EIS tests of GeP₅ ASSP device after 1st cycle and 10 000th cycle.

Figure S14 The XRD pattern of GeP₅ film after electrochemical measurements.

Figure S15 The SEM images of the GeP₅ electrode: (a) before cycling; (b) after cycling. The corresponding cross-section images are given as the insets.

Material	Structure	Electrical conductivity (S m ⁻¹)
Graphite ¹	P6 ₃ /mc	$3.3 \times 10^2 - 2 \times 10^5$
BP ¹	Стса	0.2-3.3×10 ²
TiS_2^2	P ³ m1	1.4×10 ⁵
WTe ₂ ³	$Pmn2_1$	1.5×10 ⁵
TaS_2^4	P6 ₃ /mmc	0.9-0.76×10 ⁶
TaSe ₂ ⁴	P6 ₃ /mmc	0.833-0.71×10 ⁶
NbS_2^4	P6 ₃ /mmc	0.83-1×10 ⁶
$NbSe_2^4$	P6 ₃ /mmc	0.83-1×10 ⁶
GeP ₅	<i>R</i> ³ <i>m</i>	2.4×10 ⁶

Table S1 Comparison of 2D materials in terms of structure and electrical conductivity

Electrode	$ au_0$	f_o	Electrolyte
	(ms)	(Hz)	
GeP5	0.29	3390	Gel
-SSCs			
ErGO	0.238	4210	Liquid
- SSCs ⁵			
G/CNT	0.82	1343	Liquid
- MSCs ⁶			
CNT	0.5	1995	Organic
- SSCs ⁷			
EG/PH1000	1.5	708	Gel
- SSCs ⁸			
СВ	1.56	641	Liquid
-SSCs ⁹			
PiCBA	0.27	3620	Gel
- MSCs ¹⁰			
PEDOT	3.3	400	Gel
- MSCs ¹¹			

Table S2 Comparison of the performance parameters (τ_0 , f_o) of various ECs for AC-line filtering.

SSCs sandwich-supercapacitors; MSCs: micro-supercapacitors; ErGO: electrochemical reduced graphene oxide; G/CNTCs: graphene/carbon nanotube carpets; CNTs: carbon nanotubes. EG/PH1000: grapheme/conducting polymer; CB: carbon black; PiCBA: azulenebridged coordination polymer framework; PEDOT: porous conducting poly (3, 4-ethylenedioxythiophene).

- 1 W. Li, H. Li, Z. Lu, L. Gan, L. Ke, T. Zhai and H. Zhou, Energy Environ. Sci. 2015, 8, 3629.
- 2 L. E. Conroy and K. C. Park, Inorg. Chem. 1968, 7, 459.
- 3 X. C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang and Y. Zhang, *Nat. Commun.* 2015, 6, 7805.
- 4 M. Naito and S. Tanaka, J. Phys. Soc. Jpn. 1982, 51, 219.
- 5 K. Sheng, Y. Sun, C. Li, W. Yuan and G. Shi, Sci. Rep. 2012, 2, 247.

- 6 J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson and J.M. Tour, Nano Lett. 2013, 13, 72.
- 7 Y. Yoo, S. Kim, B. Kim and W. Kim, J. Mater Chem. A 2015, 3, 11801.
- 8 Z. S. Wu, Z. Liu, K. Parvez, X. Feng and K. Müllen, Adv. Mater. 2015, 27, 3669.
- 9 P. Kossyrev, J. Power Sources 2012, 201, 347.
- 10 C. Yang, K. S. Schellhammer, F. Ortmann, S. Sun, R. Dong, M. Karakus, Z. Mics, M. Löffler, F. Zhang, X. Zhuang, E. Cánovas, G. Cuniberti, M. Bonn and X. Feng, *Angew. Chem.*, *Int. Ed.* 2017, 129, 3978.
- 11 N. Kurra, M. K. Hota and H. N. Alshareef, Nano Energy 2015, 13, 500.