Supporting materials for

Bacteria Cell Templated Porous Polyaniline Facilitated Detoxification and Recovery of Hexavalent Chromium

Kedong Gong¹, Siyuan Guo¹, Yue Zhao¹, Qian Hu¹,

Hu Liu,^{2,3} Dezhi Sun¹, Min Li¹, Bin Qiu^{1,*} Zhanhu Guo^{2,*}

¹Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083 China

²Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, TN 37996 USA

^{3.} National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China

> *: to whom the correspondence should be addressed <u>qiubin2015@bjfu.edu.cn</u> (B. Qiu) zguo10@utk.edu (Z. Guo)

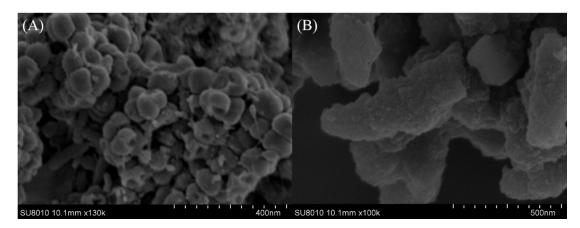


Fig. S1 SEM images of (A) bacterial used as template and (B) pristine PANI.

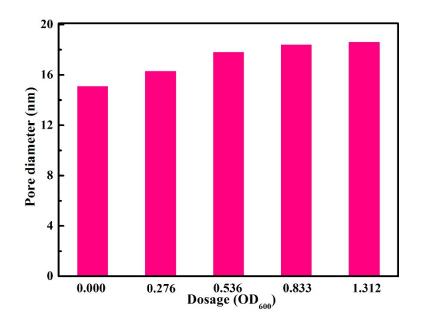


Fig. S2 Pore size distribution of the synthesized bacteria-templated porous PANI.

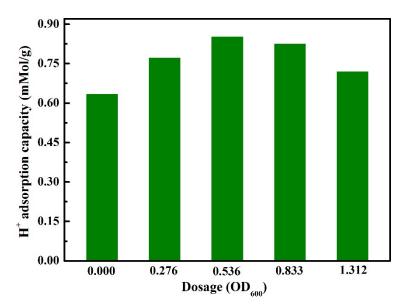
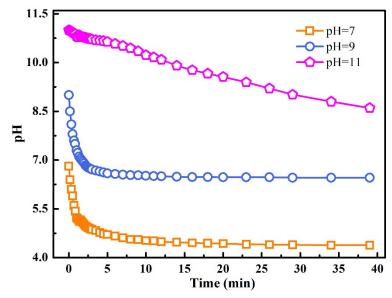
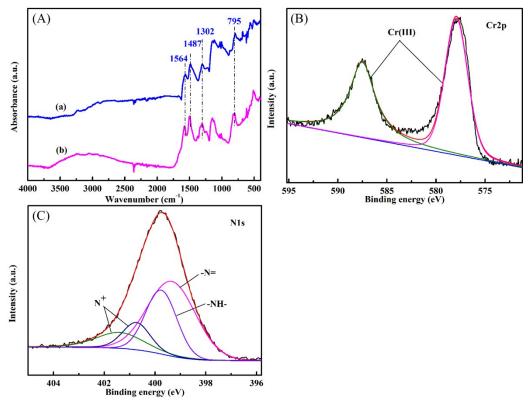




Fig. S3 H^+ storage capacity of the synthesized porous PANI with different dosages of bacteria template (initial pH = 4).

Fig. S4 H⁺ release from the synthesized porous PANI ($OD_{600} = 0.536$) with an initial pH at 7, 9 and 11.

Fig. S5 (A) FT-IR spectra of porous PANI (a) before and (b) after being treated by Cr(VI) at pH 1.0; (B) Cr2p and (C) N1s XPS spectra of porous PANI after treated with Cr(VI).