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Figure S1 a) XRD patterns of the prepared materials with adding different mount of 

MnSO4, b) the detail XRD patterns of Mn(VO3)2 and VO2.
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Figure S2 SEM images of the prepared materials with adding different mount of MnSO4, 

a) Mn:V=0:1, b) Mn:V=0.1:1, c) Mn:V=0.5:1, d) Mn:V=0.75:1, e) Mn:V=1:1, and f) 

Mn:V=2:1.
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The formation mechanism of 1D vanadium-based oxide is usually attributed to the 

well-known “Ostwald ripening mechanism”, which has been widely studied by Chen 

et al. and many other researchers.1,2 To investigate the role of MnSO4·H2O in the 

formation of the ultrathin (NH4)2V10O25·8H2O nanobelts, the samples obtained at 

different experimental conditions by adjusting the contents of MnSO4·H2O were 

carefully characterized. Figure S1a shows the XRD patterns of the synthesized 

samples. The XRD pattern of the sample prepared without adding MnSO4·H2O can be 

indexed to monoclinic VO2 with lattice constants: a=1.20, b=0.37, c=0.64 nm, and 

β=106.6° (JCPDS 31-1438). The peak at ~ 10.4° appeared as adding a small amount 

of MnSO4·H2O (Mn:V mole radio 0.1:1) and shifted to a lower degree, indicating that 

the lattice constant become large with increasing the MnSO4·H2O concentration. In 

addition, the peaks at ~28.9°, 30.1°, 44.1°, 45.2°, 49.5°, which belong to VO2, 

gradually disappear with continuous adding MnSO4·H2O. When the Mn:V ratio is set 

to 2:1, the XRD pattern can be assigned to Mn(VO3)2 (JCPDS 35-0139). As shown in 

the Figure S2 the SEM demonstrate the nanobelts were become thinner with 

increasing content of MnSO4·H2O, until the Mn:V ratio is 2:1 the material is 

composed of nanobelts and nanoparticle.”
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Figure S3.TG result of the V10O24·12H2O obtained from room temperature to 700 °C 

in air atmosphere at heating rate of 10 °C min‒1. To investigate the water content, 

thermogravimetry (TG) was conducted and the plot is shown in Figure R3. In 

accordance with literature data, (Adv. Energy Mater., 2017, 7, 1602720) the 

temperature increases from room temperature to 150 °C, the weight loss is generally 

attributed to the physically absorbed water. More strongly bound water (structural 

water) departs between 150 °C and 350 °C. When heated to 350 °C, complete 

removal of water (~12.8%) was found, corresponding to 7.6 moles of H2O per mole 

of (NH4)2V10O25. However, by considering the weight loss from 150 °C to 350 °C, we 

estimate that there are 2.05 moles of structural water molecules in each formula unit 

of (NH4)2V10O25. In brief, the estimated H2O content is less than 8, which cause the 

impurity phase as mentioned in the question 2. Besides, the weight loss between 350 

°C and 650 °C may because of the release of ammonia and the oxidation of vanadium 

element.



S6



S7

Figure S4 a) A SEM image of the (NH4)2V10O25·8H2O nanobelts. b) A panoramic 

TEM image of the nanobelts. c and d) STEM of the prepared (NH4)2V10O25·8H2O 

nanobelts. e) A HRTEM image of an individual nanobelt with high crystallinity. f) 

The (200) lattice fringes with a d-spacing of 0.535 nm and the (010) lattice fringes 

with a d-spacing of 0.364 nm.  
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Figure S5 a, c) AFM images of single nanobelts. b, d) Cross-sectional profile shows 

the thickness of the single layer nanobelts is around 10 nm.
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Figure S6 a) Discharge-Charge and b) CV curves of (NH4)2V10O25·8H2O-based electrodes 

prepared in the first two cycles.
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Figure S7. Cycling performances of the (NH4)2V10O25·8H2O /Zn Cell using 2M 

ZnSO4 aqueous electrolyte. The capacity retention of 65.7% after 1000 cycles is 

unsatisfied by compared with 91.2% using 3 M Zn(CF3SO3)2 electrolyte.
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Figure S8. Cycling performances of the (NH4)2V10O25·8H2O / Zn Cell. Capacity as a 

function of cycle number obtained at the current densities of a) 0.1, and b) 1 A g−1. 
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GITT measurement 
The GITT test, consisting of a series of current pulses (≈50 mA g−1) for 10 min 

followed by a 1 h relaxation process, was performed using the Neware battery testing 

system with 0.7 and 1.7 V (vs Zn2+/Zn) as the low and high cutoff voltages. The 

chemical diffusion coefficient DZn
2+ in the active material can be estimated according 

to the following equation:

 DZn
2+ = (4/πτ) * [nM VM/S]2 [ΔES/ΔEt]2 

where, τ is the constant current pulse duration; nM and VM are the moles and molar 

volume of (NH4)2V10O25·8H2O, respectively; S is the electrode-electrolyte interface 

area (taken as the geometric area of the electrode ～1.131cm2); ΔES, and ΔEt are the 

change in the steady state voltage and overall cell voltage after the application of a 

current pulse in a single step GITT experiment, respectively.3,4
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Figure S9 a) XRD patterns of (NH4)2V10O25·8H2O electrodes collected at various stares of 

the third cycles. b) The detail Raman spectral of (NH4)2V10O25·8H2O electrodes during 

charging and discharging progress of the second cycle.
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Figure S10 a) The potential structure evlution of the prepared (NH4)2V10O25·8H2O during 

Zn insertion/extraction. The (NH4)2V10O25·8H2O displays an interlayer spacing of 10.45 Å, 

which is similar to the hydrated vanadium pentoxide (V2O5•nH2O). The structure 

composition of bilayered which are more stable, the interlamellar spacing between the 

bilayered was connected by the so-called electrostatic attraction which was adjustable from 

10.45 to 13.2 Å along with the Zn2+ insertion/de-insertion. 3, 5  

b) Orthorhombic V2O5 (α-V2O5) with interlayer spacing of 4.4 Å is not suitable for long-

term reversible Zn(H2O)2+ ion (radius of 4.3 Å) insertion/extraction, since the layered 

structure will be flaking which leads to capacity fading after the first cycle.6 
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Table S1. The main elements content of the pristine (NH4)2V10O25·8H2O and the 

(NH4)2V10O25·8H2O electrodes collected at fully discharge/charge states in the 

first two cycles

XPS
Samples

V (at.%) O (at.%) Zn (at.%) Mn (at.%) N (at.%)

pristine 24.42 69.4 - 1.48 4.67

1st discharge 21.04 65.57 13.13 - -

1st charged 23.09 72.74 3.99 - -

2nd discharged 20.88 65.39 13.42 - -

2nd charge 22.03 72.14 5.62 - -



S16

Figure S11 XPS spectra of the (NH4)2V10O25·8H2O electrodes. a, b) Survey spectra, c, d) 

V 2p and O 1s region of the XPS spectra in the second cycle. e) Mn 2p region obtained at 

first two cycles and the pristine (NH4)2V10O25·8H2O.
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Figure S12 Energy dispersive X-ray spectra of the (NH4)2V10O25·8H2O electrodes 

collected at fully discharge/charge states in the second cycle and the pristine 

(NH4)2V10O25·8H2O. 
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d200=0.543nm

Figure S13 a) and b) SEM, TEM, and c) TEM images of the (NH4)2V10O25·8H2O 

electrodes obtained as discharged to 0.7 V in the initial cycle. We can see that the 

electrodes are composed of belt-like morphologies. d) A HRTEM image exhibits the (200) 

lattice fringes with a d-spacing of 0.543 nm, indicating that the phase has not changed in 

the fully discharge stage.
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Figure S14 a) and b) SEM images of the (NH4)2V10O25·8H2O electrodes obtained as 

charged to 1.7 V in the initial cycle. We can see that the electrodes are composed of belt-

like morphologies. c) HRTEM image presents a bilayer spacing of 1.32 nm that 

corresponds to the d001 spacing of V2O5·nH2O. While a HRTEM image (Figure s11. d)) 

exhibits the (200) lattice fringes with a d-spacing of 0.541 nm, indicating that the phase has 

not changed in the fully charge stage except a little expand in d001 spacing.
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