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Supplementary Figures

Figure S1 SEM images of ZIF-67 (A), CNPC-500 (B), CNPC-700 (C) and NCP-600 
(D).
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Figure S2 TEM image (A) and the corresponding EDS mapping (B) of CNPC-600.
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Figure S3 N2 adsorption/desorption isotherms (A) and pore size distribution (B) of 

CNPC-600 and NPC-600, respectively.
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Figure S4 TGA curves of CNPC-600, the inset pattern is the XRD data of calcined 

sample. 
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Figure S5 XRD patterns (A) and Raman spectra (B) of NPC-500, NPC-600 and NPC-

700, respectively.
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Figure S6 X-ray photoelectron spectroscopy (XPS) of C 1S for NPC-500 (A) and NPC-

700 (B).
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Figure S7 Cycle performance at 100 mA g-1 (A), 200 mA g-1 (B); galvanostatic 

charge/discharge curves at different rate (C) and cycle ability at 1 A g-1 (D) of NPC-

600.



9

Table S1 Detailed Comparison of NPC-600 with other carbon-based anodes in PIBs.

Cycling performance Rate performance
Types of 
materials

Capacity(mAh g-1)
/cycles

Current rate
 (A g-1)

Capacity
(mAh g-1)

Current 
(A g-1)

Ref 
(SI).

Carbon nanofiber 170/1900 0.2 110 2 [S1]
Hard carbon 
microspheres

216/100 0.2 136 1 [S2]

Hard-Soft 
composite 

carbon
118/200 0.278 112 1 [S3]

Porous carbon 
paper

270/1200 0.02 156 2 [S4]

graphene 474/50 0.05 160 2 [S5]
N-doped carbon 

nanofibers
248/100 0.025 126 5 [S6]

Mesoporous 
carbon

197/200 0.2 144 1 [S7]

N-doped 
graphene

203/100 0.1 203 0.1 [S8]

N-rich hard 
carbon

205/200 0.03 154 0.3 [S9]

NPC-600 283.3/600 0.2 186.2 2
This 
work
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Figure S8 Electrochemical impedance spectroscopy (EIS) data of NPC-500, NPC-600 

and NPC-700.

Table S2 The simulated results from electrochemical impedance spectra of NPC-500, 

NPC-600 and NPC-700 samples.

Sample Rs (Ω) Rct (Ω) K
D  (cm–2 s–1)

NPC-500 13.45 783.47 9.54×10-14

NPC-600 12.43 391.65 18.19×10-14

NPC-700 21.57 1195.78 8.12×10-14

The K ion diffusion coefficient ( K
D  ) of NPC-500, NPC-600 and NPC-700 can be 

calculated according to the following equations:S10

2 2

2 4 4 2 2K 2 w

R TD
A n F C                               (1)

where R is the gas constant, T is the absolute temperature, A is the surface area of 

the cathode, n is the number of electrons per molecule during oxidization, F is the 

Faraday constant, C is the concentration of K+ ion, σ w is the Warburg factor which is 

relative with Z'.

-1/2' s ct wZ R R                                  (2)
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Rs is the resistance of the electrolyte and electrode material, Rct is the charge 

transfer resistance and ω is the angular frequency in the low frequency region.

Figure S9 Electrochemical impedance spectroscopy (EIS) data of NPC-600 and NPC-

600 after cycles.



12

Figure S10 TEM image (A) and EDS mapping (B-D) at the fully potassiation state of 

NPC-600.
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Figure S11 Ex-situ Raman spectra of NPC-600 at different charge/discharge states.

Table S3 The ID/IG values of NPC-600 at different charge-discharge states.

State ID/IG

Initial state 1.02

Discharge at 0.75 V 0.98

Discharge at 0.01 V 0.91

charge at 1.25 V 0.96

charge at 3 V 0.99
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