Supporting information for

High Pyridine N-Doped Porous Carbon Derived from Metal-Organic

Frameworks for Boosting Potassium-Ion Storage

Youpeng Li^{a,b}, Chenghao Yang^{a,b*}, Fenghua Zheng^{a,b}, Xing Ou^{a,b}, Qichang Pan^{a,b},

Yanzhen Liu^{a,b}, Gang Wang^{a,b}

a Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy

Research Institute, School of Environment and Energy, South China University of

Technology, Guangzhou 510006, P. R. China

b Guangdong Engineering and Technology Research Center for Surface Chemistry of

Energy Materials, New Energy Research Institute, School of Environment and Energy,

South China University of Technology, Guangzhou 510006, PR China

^{*} Corresponding authors. *E-mail* addresses: esyangc@scut.edu.cn (C. Yang)

Supplementary Figures

Figure S1 SEM images of ZIF-67 (A), CNPC-500 (B), CNPC-700 (C) and NCP-600 (D).

Figure S2 TEM image (A) and the corresponding EDS mapping (B) of CNPC-600.

Figure S3 N_2 adsorption/desorption isotherms (A) and pore size distribution (B) of CNPC-600 and NPC-600, respectively.

Figure S4 TGA curves of CNPC-600, the inset pattern is the XRD data of calcined sample.

Figure S5 XRD patterns (A) and Raman spectra (B) of NPC-500, NPC-600 and NPC-

700, respectively.

Figure S6 X-ray photoelectron spectroscopy (XPS) of C 1S for NPC-500 (A) and NPC-700 (B).

Figure S7 Cycle performance at 100 mA g^{-1} (A), 200 mA g^{-1} (B); galvanostatic charge/discharge curves at different rate (C) and cycle ability at 1 A g^{-1} (D) of NPC-600.

Townson	Cycling performance		Rate performance		
Types of materials	Capacity(mAh g ⁻¹)	Current rate	Capacity	Current	- Kei
materials	/cycles	(A g ⁻¹)	(mAh g ⁻¹)	(A g ⁻¹)	(31).
Carbon nanofiber	170/1900	0.2	110	2	[S1]
Hard carbon	216/100	0.2	126	1	[\$2]
microspheres	210/100	0.2	150	1	[82]
Hard-Soft					
composite	118/200	0.278	112	1	[S 3]
carbon					
Porous carbon	270/1200	0.02	156	2	[S4]
paper	270/1200				
graphene	474/50	0.05	160	2	[S 5]
N-doped carbon	248/100	0.025	126	5	[86]
nanofibers	248/100	0.025	120		
Mesoporous	107/200	0.2	144	1	[87]
carbon	197/200	0.2	144	1	
N-doped	202/100	0.1	202	0.1	[S8]
graphene	203/100	0.1	203	0.1	
N-rich hard	205/200	0.03	154	0.2	[80]
carbon	203/200	0.05	134	0.5	[37]
NPC-600	283.3/600	0.2	186.2	2	This
					work

 Table S1 Detailed Comparison of NPC-600 with other carbon-based anodes in PIBs.

Figure S8 Electrochemical impedance spectroscopy (EIS) data of NPC-500, NPC-600 and NPC-700.

Table S2 The simulated results from electrochemical impedance spectra of NPC-500,

NPC-600	and	NPC-70	00	sampl	les.
---------	-----	--------	----	-------	------

Sample	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$D_{\rm K^+} ({\rm cm^{-2}}~{\rm s^{-1}})$
NPC-500	13.45	783.47	9.54×10 ⁻¹⁴
NPC-600	12.43	391.65	18.19×10 ⁻¹⁴
NPC-700	21.57	1195.78	8.12×10 ⁻¹⁴

The K ion diffusion coefficient (D_{K^+}) of NPC-500, NPC-600 and NPC-700 can be calculated according to the following equations:^{S10}

$$D_{K^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma_w^2}$$
(1)

where *R* is the gas constant, *T* is the absolute temperature, *A* is the surface area of the cathode, *n* is the number of electrons per molecule during oxidization, *F* is the Faraday constant, *C* is the concentration of K⁺ ion, σ_w is the Warburg factor which is relative with Z'.

$$Z' = R_s + R_{ct} + \sigma_w \omega^{-1/2} \tag{2}$$

 R_s is the resistance of the electrolyte and electrode material, R_{ct} is the charge transfer resistance and ω is the angular frequency in the low frequency region.

Figure S9 Electrochemical impedance spectroscopy (EIS) data of NPC-600 and NPC-

600 after cycles.

Figure S10 TEM image (A) and EDS mapping (B-D) at the fully potassiation state of NPC-600.

Figure S11 Ex-situ Raman spectra of NPC-600 at different charge/discharge states.

State	I_D/I_G
Initial state	1.02
Discharge at 0.75 V	0.98
Discharge at 0.01 V	0.91
charge at 1.25 V	0.96
charge at 3 V	0.99

Table S3 The I_D/I_G values of NPC-600 at different charge-discharge states.

Reference

[S1] R. A. Adams, J. M. Syu, Y. Zhao, C. T. Lo, A. Varma and V. G. Pol, ACS Appl. Mater. Interfaces., 2017, 9, 17872-17881.

[S2] Z. Jian, Z. Xing, C. Bommier, Z. Li and X. Ji, Adv. Energy Mater., 2016, 6, 1501874

[S3] Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su and X. Ji,

Adv. Funct. Mater., 2017, 27, 1700324

- [S4] M. Huang, K. Mi, J. Zhang, H. Liu, T. Yu, A. Yuan, Q. Kong and S. Xiong, J. Mater. Chem. A., 2017, 5, 266-274.
- [S5] G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing and Q.-c. Zhuang, J. Mater. Chem. A., 2017, 5, 7854-7861.
- [S6] Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu and Y. Lei, *Nat. commun.*, 2018, 9, 1720.
- [S7] W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang and S. Guo, *Adv. Energy Mater.*, 2018, 8, 1701648.
- [S8] K. Share, A. P. Cohn, R. Carter, B. Rogers and C. L. Pint, ACS Nano., 2016, 10, 9738–9744.
- [S9] C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai, L. Peng, Y. Huang, J. Jiang, Y. Huang, L. Zhang and J. Xie, *Energy Storage Mater.*, 2017, 8, 161-168
- [S10] N. Wu, W. Du, X. Gao, L. Zhao, G. Liu, X. Liu, H. Wu and Y. B. He, *Nanoscale.*,
 2018, 10, 11460-11466.