Supporting Information

Highly simple and rapid synthesis of ultrathin gold nanowires with

(111)-dominant facets and enhanced electrocatalytic properties

Xian Jiang,^{a,b} Xiaoyu Qiu,^a Gengtao Fu,^a Jingze Sun,^a Zhenna Huang,^a Dongmei Sun,^a Lin Xu, *^a Jiancheng Zhou *^b and Yawen Tang *^a

^a Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical

Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing

210023, P. R. China. Email: xulin001@njnu.edu.cn; njuxulin@gmail.com and tangyawen@njnu.edu.cn

^b School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China. E-mail:

jczhou@seu.edu.cn

Experimental

Materials and reagents

 α -naphthol (C₁₀H₈O) was purchased from Aladdin (Shanghai, China). Chloroauric acid (HAuCl₄) was supplied by Shanghai Dibo Chemical Technology Co., Ltd. (Shanghai, China). Ethanol (C₂H₅OH) was provided by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Deionized water was used throughout the experiments. All chemicals were of analytical reagent grade and used as received without further purification.

Characterizations

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were performed on a JEOL JEM-2100F transmission electron microscopy operated at an accelerating voltage of 200 kV. Scanning electron microscopy (SEM) images and energy-dispersive X-ray (EDX) spectrum were acquired on a Hitachi S5500 SEM. X-ray diffraction (XRD) patterns of the samples were determined by a Model D/max-rC Xray diffractometer using Cu K α radiation source (λ =1.5406 Å) and operating at 40 kV and 100 mA. X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Thermo VG Scientific ESCALAB 250 spectrometer with a monochromatic Al K α X-ray source. The binding energy was calibrated by means of the C1s peak energy of 284.6 eV. Thermogravimetric analyses (TGA) of the samples were conducted on a Perkin-Elmer thermal analysis system at a heating rate of 10 °C min⁻¹ under oxygen atmosphere.

Fig. S1 EDX spectrum of the resultant Au nanowires.

Fig. S2 XPS spectrum of Au 4f region for the obtained Au nanowires.

Fig. S3 (a and b) Digital photos showing the large-scale synthesis of Au nanowires from a single batch, and (c and d) TEM images of the Au nanowires from large-scale synthesis.

Fig. S4 XRD pattern of the product collected upon the mixing of HAuCl₄ and α -naphthol solutions, suggesting the rapid formation of metallic Au.

Fig. S5 SEM images of the obtained Au nanowire-arrayed microspheres synthesized at different reaction temperatures. (a) 20 °C, (b) 40 °C, (c) 20 °C, and (d) magnified SEM image showing the arrayed structure of the Au microsphere.

Fig. S6 TGA curves of the as-prepared Au nanowire-arrayed microspheres and Au nanowires.

Fig. S7 XPS spectra of the Au nanowire-arrayed microspheres and final Au nanowires. (a) survey spectra of the two samples and (b) Au 4f region for the Au nanowire-arrayed microspheres.

Fig. S8 SEM images of the re-assembled Au nanowire arrays obtained by dispersing

disordered Au nanowires in α -naphthol ethanol solution.

Fig. S9 (a) TEM image, (b) corresponding size distribution and (c) XRD pattern of the

Au nanoparticles synthesized according to the literature.^{1,2}

Fig. S10 Chronoamperometric measurements of four catalysts at 0.5 V in O₂-saturated

0.1 M KOH.

Fig. S11 ORR LSV curves of the catalysts recorded in O_2 -saturated 0.1 M HClO₄ solution.

other Au nanowires reported before. *T*^(a) / ^oC *d*^(d) / nm Number t^(b) Ref *l*^(c) / nm Solvent 1 water + ethanol 60 ~1 min >1000 4.6 this work 3 2 R.T.^(e) hexane >48 h _ ~1.0 4 3 1100 30 min 280-740 80-125 _ 5 4 triisopropylsilane R.T. 4-5 h >1000 1.6 6 5 oleylamine + trichloromethane 35 10-3500 1.6 >5 days 7 6 water + toluene R.T. >1 h >1000 ~5 8 2 7 toluene 55 8 h >1000 9 8 37 >1000 water 48 h 13.1 10 9 R.T. 24 h 100000 15 water 11 10 >12 h 10000 ~31.5 water R.T. 12 11 oleylamine + oleic acid 80 5 h >1000 3 or 9 13 12 24-100 h 2000 1.8 hexane 60 14 45.3 13 water 30 1-72 h >1000 15 14 water + dichloromethane 72 h ~500 ~20 R.T. 16 15 water + toluene R.T. >24 h <500 <5.0 17 16 25 <1000 30 water 18 5 17 water + toluene R.T. 1 h <1000 19 18 water 180 & 25 8 h >1000 22 20 19 n-hexane 30 >3 h -2 21 2 20 hexane + oleylamine R.T. >36 h 500 22 21 water R.T. 30 min 650 15 23 22 1 h 1000 40-65 water R.T. 24 23 >1000 6 water + ethanol R.T. >2 h 25 24 water R.T. >52 h >1000 28-47 26 25 1.8 toluene or benzene 55 8 h >1000 27 26 n-butanol + water R.T. 10 day >1000 13 28 27 hexane R.T. 4-5 h 2000 1.8 29 28 water 90 30 min >1000 200 30 4 days 29 ~4000 1.6 oleylamine H_2O 31 a few 30 toluene R.T. ~1000 2 days 32 31 water R.T. >2 h 1000 50 33 32 tetrahydrofuran 24 h 3000-6000 50 R.T. 34 33 water 30 20 h 10 35 30 >12 h >1000 30-80 34 water

Table S1 Comparison of the synthetic method of the Au nanowires in this work with

ath an Arrian arrivan ann antaid le afaire

^(a) T = Temperature, ^(b) t = time, ^(c) I = length; ^(d) d = diameter; ^(e) R.T. = Room Temperature.

	, ,					
Num ber	Catalysts	E _{onset} /V	<i>E</i> _{1/2} /V	Electrolyte	Loadings (mg cm ⁻²)	Ref.
1	Au nanowires	1.06	0.881	0.1 М КОН	0.1019	this work
2	AuPd NCs/rGO	0.92	0.86	0.1 M KOH	0.0849	36
3	PtAu SLAs	0.903	0.801	0.1 M KOH	0.0708	37
4	Aulr/C	-	0.774	0.1 M NaOH	0.2548	38
5	AuPt NDs	0.98	0.87	0.1 M KOH	0.0849	39
6	Au-Ni(OH) ₂ -NC/GCE	0.907	~0.65	0.1 M KOH	-	40
7	AuPd@PdAu-PEI	0.982	0.869	0.1 M NaOH	0.1019	41
8	AuPC-1	0.95	0.83	0.1 M KOH	0.0808	42
9	Au@TiO ₂	0.92	~0.80	0.1 M NaOH	-	43
10	AuNDs-GO	~0.85	0.61	0.1 M KOH	0.04	44
11	Au-aerogel-CN _x	~0.92	~0.855	0.5 М КОН	0.13	45
12	AuCNS-30%	0.96	0.85	0.1 M KOH	0.0808	46
13	Au(51k-18k)/rGO	~0.714	-	0.1 M KOH	-	47
14	PO ₄ -CDs-6/Au	0.998	~0.80	0.1 M KOH	0.01414	48
15	Au/rGO	0.864	~0.764	0.1 M KOH	0.1	49
16	RGO/AuNPs	0.8413	-	0.1 M KOH	-	50
17	s-Graphene/PyPBI/Au _{1.6}	0.874	~0.664	0.1 M KOH	0.0053	51

Table S2 Comparison of the ORR activity of the as-prepared Au nanowires with other

Au-based catalysts reported before.

References

- 1. J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan and P. Mulvaney, *Adv. Funct. Mater.*, 2004, **14**, 571-579.
- 2. C. M. Sánchez-Sánchez, F. J. Vidal-Iglesias, J. Solla-Gullón, V. Montiel, A. Aldaz, J. M. Feliu and E. Herrero, *Electrochim. Acta*, 2010, **55**, 8252-8257.
- 3. H. Cui, C. Hong, A. Ying, X. Yang and S. Ren, *ACS Nano*, 2013, **7**, 7805-7811.
- M. Jung, H. Noh, Y. J. Doh, W. Song, Y. Chong, M. S. Choi, Y. Yoo, K. Seo, N. Kim and B. C. Woo, ACS Nano, 2011, 5, 2271-2276.
- 5. A. Sanchez-Iglesias, B. Rivas-Murias, M. Grzelczak, J. Perez-Juste, L. M. Liz-Marzan, F. Rivadulla and M. A. Correa-Duarte, *Nano Lett.*, 2012, **12**, 6066-6070.
- N. Pazospérez, D. Baranov, S. Irsen, M. Hilgendorff, L. M. Lizmarzán and M. Giersig, Langmuir, 2008, 24, 9855-9860.
- 7. G. Ramanath, J. D'ArcyGall, T. Maddanimath, A. V. Ellis, P. G. Ganesan, R. Goswami, A. Kumar and K. Vijayamohanan, *Langmuir*, 2004, **20**, 5583-5587.
- 8. C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura and T. Kawai, *Langmuir*, 2013, **29**, 1669-1675.
- 9. H. Yang, M. Du, T. Odoom-Wubah, J. Wang, D. Sun, J. Huang and Q. Li, *J. Chem. Technol. Biotechnol.*, 2014, **89**, 1410-1418.
- 10. C. Zhu, H. C. Peng, J. Zeng, J. Liu, Z. Gu and Y. Xia, *J. Am. Chem. Soc.*, 2012, **134**, 20234-20237.
- 11. F. Kim, K. Sohn, J. Wu and J. Huang, J. Am. Chem. Soc., 2008, 130, 14442-14443.
- 12. C. Wang, Y. Hu, C. M. Lieber and S. Sun, J. Am. Chem. Soc., 2008, 130, 8902-8903.
- 13. X. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel and Y. Xia, *J. Am. Chem. Soc.*, 2008, **130**, 8900-8901.
- 14. M. Wang, T. Kong, X. Jing, Y.-K. Hung, D. Sun, L. Lin, Y. Zheng, J. Huang and Q. Li, *Ind. Eng. Chem. Res.*, 2012, **51**, 16651-16659.
- 15. G. Lu, C. Li and G. Shi, Chem. Mater., 2007, 19, 3433-3440.
- 16. B. Li, B. Jiang, H. Tang and Z. Lin, Chem. Sci., 2015, 6, 6349-6354.
- 17. X. Gao, F. Lu, B. Dong, Y. Liu, Y. Gao and L. Zheng, *Chem. Commun.*, 2015, **51**, 843-846.
- 18. T. Maddanimath, A. Kumar, J. D'Arcy-Gall, P. G. Ganesan, K. Vijayamohanan and G. Ramanath, *Chem. Commun.*, 2005, 1435-1437.
- 19. T. Guo, G. Yu, Y. Zhang, H. Xiang, F. Chang and C.-J. Zhong, *J. Phys. Chem. C*, 2017, **121**, 3108-3116.
- A. Roy, S. Kundu, K. Muller, A. Rosenauer, S. Singh, P. Pant, M. P. Gururajan, P. Kumar, J. Weissmuller, A. K. Singh and N. Ravishankar, *Nano Lett.*, 2014, 14, 4859-4866.
- W. Zhu, Y. J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 2014, 136, 16132-16135.
- 22. S. Kundu, J. Mater. Chem. C, 2013, 1, 831-842.
- 23. H. Li, Y.-J. Li, L.-L. Sun and X.-L. Zhao, *Electrochim. Acta*, 2013, **108**, 74-78.
- 24. J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, S. T. Wei, C. L. Gan, H. Zhang and H. Chen, *ACS Nano*, 2013, **7**, 2733-2740.

- 25. G. D. Sulka, A. Brzózka and L. Liu, *Electrochim. Acta*, 2011, 56, 4972-4979.
- 26. Y. Imura, H. Tanuma, H. Sugimoto, R. Ito, S. Hojo, H. Endo, C. Morita and T. Kawai, *Chem. Commun.*, 2011, **47**, 6380-6382.
- 27. M.-H. Wang, Y.-J. Li, Z.-X. Xie, C. Liu and E. S. Yeung, *Mater. Chem. Phys.*, 2010, **119**, 153-157.
- 28. H. Feng, Y. Yang, Y. You, G. Li, J. Guo, T. Yu, Z. Shen, T. Wu and B. Xing, *Chem. Commun.*, 2009, 1984-1986.
- 29. T. Wang, X. Hu, J. Wang and S. Dong, *Talanta*, 2008, **75**, 455-460.
- 30. Z. Huo, C. K. Tsung, W. Huang, X. Zhang and P. Yang, *Nano Lett.*, 2008, **8**, 2041-2044.
- 31. A. Halder and N. Ravishankar, Adv. Mater., 2007, 19, 1854-1858.
- 32. C.-L. Xu, L. Zhang, H.-L. Zhang and H.-L. Li, Appl. Surf. Sci., 2005, 252, 1182-1186.
- 33. J. U. Kim, S. H. Cha, K. Shin, J. Y. Jho and J. C. Lee, Adv. Mater., 2004, 16, 459-464.
- 34. S. K. Das, A. R. Das and A. K. Guha, *Small*, 2010, **6**, 1012-1021.
- 35. R. Dou and B. Derby, Scr. Mater., 2008, 59, 151-154.
- 36. X. X. Lin, X. F. Zhang, A. J. Wang, K. M. Fang, J. Yuan and J. J. Feng, J. Colloid Interface Sci., 2017, 499, 128-137.
- 37. J.-J. Feng, L.-L. He, R. Fang, Q.-L. Wang, J. Yuan and A.-J. Wang, *J. Power Sources*, 2016, **330**, 140-148.
- 38. L. Yuan, Z. Yan, L. Jiang, E. Wang, S. Wang and G. Sun, *J. Energy Chem.*, 2016, **25**, 805-810.
- 39. X. Weng, Y. Liu, K.-K. Wang, J.-J. Feng, J. Yuan, A.-J. Wang and Q.-Q. Xu, *Int. J. Hydrogen Energy*, 2016, **41**, 18193-18202.
- 40. P. Kanagavalli, R. Sudha, S. Boopathi and S. S. Kumar, *Electrochem. Commun.*, 2017, **82**, 61-65.
- 41. Q. Xue, G. Xu, R. Mao, H. Liu, J. Zeng, J. Jiang and Y. Chen, *J. Energ. Chem.*, 2017, **25**, 805-810.
- 42. L. Wang, Z. Tang, W. Yan, H. Yang, Q. Wang and S. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 20635-20641.
- L. Guo, K. Liang, K. Marcus, Z. Li, L. Zhou, P. D. Mani, H. Chen, C. Shen, Y. Dong, L. Zhai, K. R. Coffey, N. Orlovskaya, Y. H. Sohn and Y. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 34970-34977.
- 44. X.-R. Li, X.-L. Li, M.-C. Xu, J.-J. Xu and H.-Y. Chen, *J. Mater. Chem. A*, 2014, **2**, 1697-1703.
- 45. M. K. Kundu, T. Bhowmik and S. Barman, J. Mater. Chem. A, 2015, 3, 23120-23135.
- 46. Q. Wang, L. Wang, Z. Tang, F. Wang, W. Yan, H. Yang, W. Zhou, L. Li, X. Kang and S. Chen, *Nanoscale*, 2016, **8**, 6629-6635.
- 47. S.-S. Kim, Y.-R. Kim, T. D. Chung and B.-H. Sohn, *Adv. Funct. Mater.*, 2014, **24**, 2764-2771.
- 48. J. Liu, S. Zhao, C. Li, M. Yang, Y. Yang, Y. Liu, Y. Lifshitz, S.-T. Lee and Z. Kang, *Adv. Energy Mater.*, 2016, **6**, 1502039-1502048.
- 49. H. Yin, H. Tang, D. Wang, Y. Gao and Z. Tang, ACS Nano, 2012, 6, 8288-8297.
- 50. X. Qiu, W. Zhou, C. Qi, D. Cheng and Y. Ouchi, *ChemElectroChem*, 2017, **4**, 992-996.

51. T. Fujigaya, C. Kim, Y. Hamasaki and N. Nakashima, *Sci. Rep.*, 2016, **6**, 21314-21323.