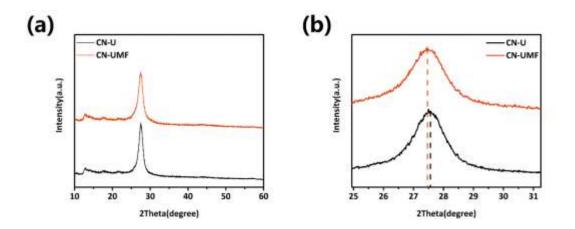
Electronic Supplementary Information


A Facile Method for Scalable Synthesis of Ultrathin g-C₃N₄ Nanosheets for Efficient Hydrogen Production

Jian-Hua Zhang,^a Ya-Jun Hou,^a Su-Juan Wang,^a Xunjin Zhu,^b Cheng-Yi Zhu,^a Zheng Wang,^a Chao-Jie Li,^a Ji-Jun Jiang,^a Hai-Ping Wang,^a Mei-Pan,^{*a} and Cheng-Yong Su^a

^aMOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

^bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, China

*Email - panm@mail.sysu.edu.cn

Fig. S1 a) XRD patterns, and b) enlarged view of (002) peak for as-prepared CN-U and CN-UMF samples.

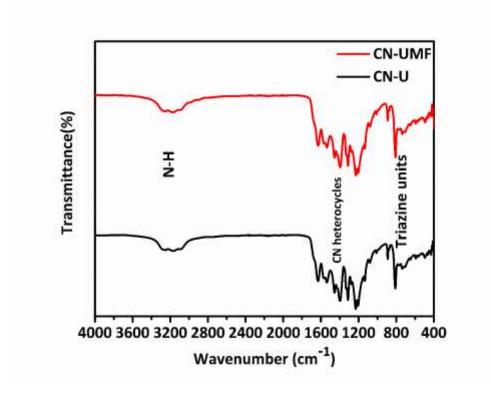
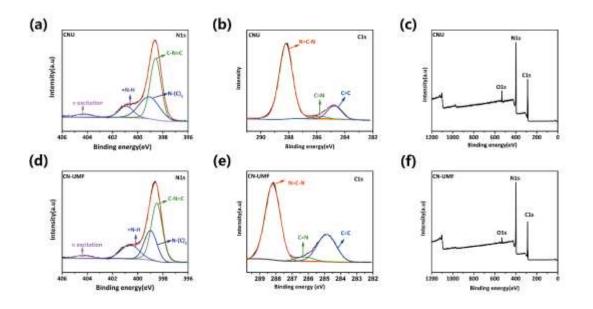



Fig. S2 FT-IR spectra of CN-UMF and CN-U.

Fig. S3 High-resolution N1s, C1s and survey XPS spectra of CN-U (a, b, c), and CN-UMF (d, e, f).

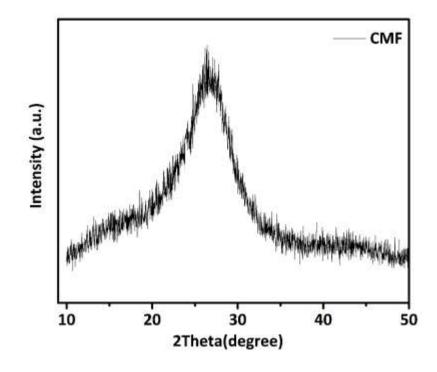


Fig. S4 XRD patterns of the carbonized foam (CMF).

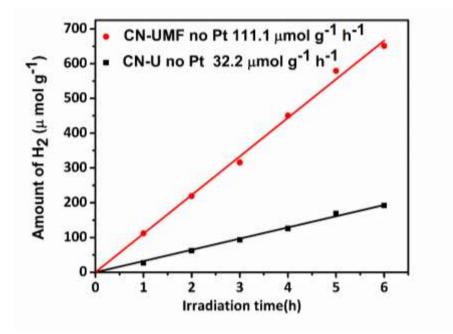


Fig. S5 Photocatalytic H_2 production activity of CN-UMF and CN-U with the absence of Pt.

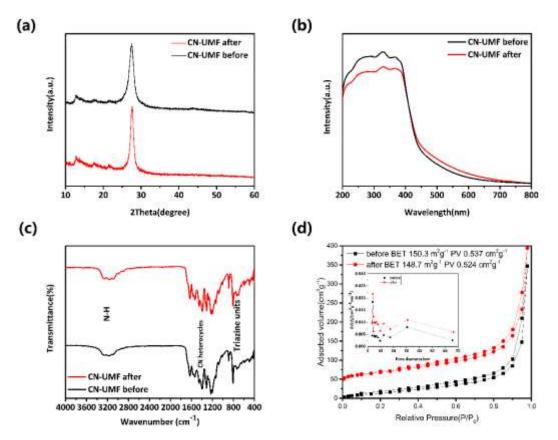


Fig. S6 a) XRD, b) DRS, c) FT-IR spectra, and d) N_2 adsorption of CN-UMF before and after photocatalytic reaction.

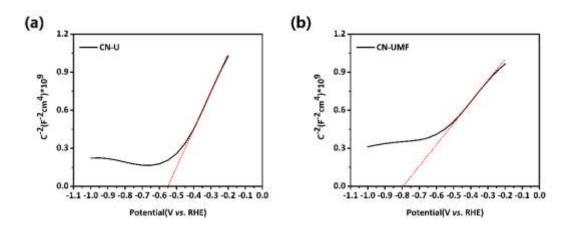


Fig. S7 Mott-Schottky plots of a) CN-U, and b) CN-UMF.

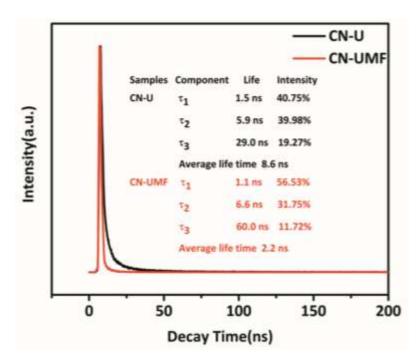


Fig. S8 Detailed decay lifetime analyses of CN-U and CN-UMF.

Table S1 The wavelength-dependent AQEs of CN-UMF.

Wavelength/nm	420	500	550	600	650
AQE	4.8%	1.4%	0.25%	0.17%	0.03%

The "solar-to-hydrogen" conversion efficiency (STH)

We also evaluated the solar energy conversion by using AM 1.5G solar simulator as the light source with CN-UMF as the catalyst. The irradiated light intensity was controlled to be 20 mW cm⁻² and the irradiation area was controlled to be 19.625 cm². After 1 h of illumination, the total incident power over the 19.625 cm² irradiation area was 0.3925 W, so that the total input energy in 1 hour was:

$$E_{solar} = 0.3925 W \times 1 \times 3600 s = 1413 J$$

During the photocatalytic reaction, 79 μ mol H₂ was detected, which indicated that the energy generated by water splitting is:

$$E_F = 79 \times 10^{-6} \times 6.02 \times 10^{23} \times 2.46 \times 1.609 \times 10^{-19} = 19 J$$

2.46 eV is the free energy of water splitting.

The "solar-to-hydrogen" conversion efficiency (STH) of CN-UMF was determined to be:

$$STH = \frac{\text{Energy of generation of hydrogen by water splitting}}{\text{Solar energy irradiating the reaction cell}} = \frac{19 J}{1413 J} \times 100\% = 1.34\%$$