Electronic Supplementary Information

Conjugated Macro-Microporous Polymer Films Bearing Tetraphenylethylenes for the Enhanced Sensing of Nitrotoluenes

Chang Wan Kang,^{†,‡} Doo Hun Lee,^{†,‡} Young Jun Shin,[†] Jaewon Choi,[∂] Yoon-Joo Ko,[∞] Sang Moon Lee,[§] Hae Jin Kim,[§] Kyoung Chul Ko,^{∆,*} and Seung Uk Son^{†,*}

[†] Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea ² Jeonbuk Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeolabuk-do 55324, Korea [∞] Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Korea [§] Korea Basic Science Institute, Daejeon 34133, Korea ⁴ Department of Chemistry Education, Chonnam National University, Gwangju 61186, Korea

E-mail address of corresponding author: sson@skku.edu, kcho1982@jnu.ac.kr

Experimental Sections

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were obtained using a JSM6700F and a JEOL 2100F, respectively. Powder X-ray diffraction (PXRD) patterns were obtained using a Rigaku MAX-2200. The surface areas were obtained through the analysis of N₂ adsorption-desorption isotherm curves obtained at 77K using a Micromeritics ASAP2020. Pore size distribution was analyzed by the density functional theory (DFT) method. Thermogravimetric analysis (TGA) was conducted using under N₂ using a Seiko Exstar 7300. Infrared absorption spectra were obtained using a Bruker VERTEX 70 FT-IR spectrometer. UV/visible absorption spectra were obtained using a JASCO FP-6200. Solid state ¹³C nuclear magnetic resonance spectroscopy (NMR) was conducted at CP-TOSS mode using a 500 MHz Bruker ADVANCE II NMR equipment at the NCIRF of Seoul National University. A 4 mm magic angle spinning probe was used with a spinning rate of 5 kHz.

Synthetic procedure for MA-CMP-F and control CMP-F

Silica spheres with an average diameter of 400 nm were prepared by the Stöber method.¹ In our work, the synthetic procedures were as follows. Ethanol (200 mL), water (23.5 mL), and ammonia solution (28-30%, 7 mL) were added to a 250 mL round bottomed flask. The solution was stirred at 600 rpm for 10 min. After tetraethylorthosilicate (TEOS, 17.5 mL, 74.2 mmol) was added to solution, the mixture was stirred with 600 rpm at room temperature for 18 h. The silica spheres were retrieved by centrifugation, washed with a 1:1 mixture of methanol and ethanol three times, and dried under vacuum. A slide glass plate (7.5 cm \times 2.5 cm \times 0.1 cm, Paul Marienfeld GmbH & Co.) was washed through sonication for 1 h in a mixture of 37% HCl (50 mL) and water (450 mL) in a 500 mL beaker. After the glass plate was washed with distilled water until the neuralization was confirmed, it was dried using N₂ flush. Silica spheres (0.30 g) were added to ethanol (60 mL) in a 70 mL vial and sonicated for 6 h. After the glass plate was added to the vial containing silica spheres, the

setting was added to oven at 50°C. After 4 days, the assembled silica spheres on the glass plate were obtained.

1,1,2,2-Tetra(4-bromophenyl)ethane and 1,1,2,2-tetra(4-ethynylphenyl)ethane were prepared by the synthetic procedures in the literature.² The glass plate with assembled silica spheres (the plate was cut to the size of 6 cm \times 2.5 cm) was added to a Rodaviss glassware (100 mL). After (PPh₃)₂PdCl₂ (3.4 mg, 4.8 µmol), CuI (0.9 mg, 4.8 µmol), triethylamine (TEA, 30 mL), and toluene (20 mL) were added to the Rodaviss glassware, the mixture was stirred at 600 rpm for 1 h. The 1,1,2,2-tetra(4-bromophenyl)ethane (31 mg, 48 µmol) and 1,1,2,2-tetra(4-ethynylphenyl)ethane (21 mg, 48 µmol) were dissolved in toluene (3 mL). After the solution was added to the Rodaviss glassware, the mixture was stirred at 600 rpm for 1 0 min and heated at 80°C overnight *without stirring*. After being cooled to room temperature, the SiO₂@CMP/glass plate was taken out, washed with ethanol (100 mL) three times, and dried in an oven at 50°C for 3 h. For the etching of silica spheres, the SiO₂@CMP/glass plate was added to 10% HF aqueous solution (50 mL) in a square dish. The separated glass plate was removed after ~1 min. After the resultant MA-CMP-F was further treated with the HF solution for additional 2 h, it was washed with ethanol (100 mL) three times. The MA-CMP-F was transferred to polytetrafluoroethylene film (PTFE, thickness of 0.1 mm, Sigma Aldrich Co.) and dried in an oven at 80°C for 1 h.

For the preparation of control CMP-F, the same synthetic procedures as those of MA-CMP-F were applied except using TLC plate (Silica gel 60 F_{254} 25 aluminium sheets, Merck Milipore) with size of 6 cm × 2.5 cm instead of the glass plate with assembled silica spheres. In addition, ~ a half amount (24 ~ 28 µmol) of the 1,1,2,2-tetra(4-bromophenyl)ethane and 1,1,2,2-tetra(4-ethynylphenyl)ethane were used. Based on the experimental characterization of thickness of control CMP-F by SEM analysis, the CMP-F with a thickness of 2.3 µm was used for the sensing tests. The other synthetic procedures for CMP-F were the same as those for MA-CMP-F.

Synthetic procedure for MA-CMP-F bearing porphyrins in Figure 5³

Tetra(4-ethynylphenyl)porphyrin and tetra(4-ethynylphenyl) Cr-Cl porphyrin were prepared by the synthetic procedures in the literature.^{4,5} The glass plate with assembled silica spheres (the plate was cut to the size of 6 cm \times 2.5 cm) was added to a Rodaviss glassware (100 mL). After (PPh₃)₂PdCl₂ (1.3 mg, 1.9 µmol), CuI (0.3 mg, 1.6 µmol), and triethylamine (TEA, 10 mL) were added to a 10 mL vial, the solution was sonicated for 1 min and then, added to the Rodaviss glassware. After toluene (40 mL) was added to the Rodaviss glassware, the mixture was stirred for 2 h. Tetra(4-ethynylphenyl)porphyrin (25 mg, 35 µmol) and 1,4-diiodobenzene (23 mg, 70 µmol) were dissolved in THF (5 mL). After the solution was added to the Rodaviss glassware, the mixture was stirred at 600 rpm for 10 min and heated at 90°C overnight *without stirring*. After being cooled to room temperature, the SiO₂@CMP/glass plate was taken out, washed with ethanol (100 mL) three times, and dried in an oven at 50°C for 3 h. For the etching of silica spheres, the SiO₂@CMP/glass plate was added to 7.5% HF aqueous solution (50 mL) in a square dish. The separated glass plate was removed after ~1 min. After the

resultant MA-CMP-F was further treated with the HF solution for additional 2 h, it was washed with a mixture of methanol and water (100 mL) three times. The MA-CMP-F containing metal-free porphyrin was transferred to polytetrafluoroethylene film (PTFE, thickness of 0.1 mm, Sigma Aldrich Co.) and dried in an oven at 80°C for 1 h. For the preparation of MA-CMP-F containing Cr-F porphyrins, tetra(4-ethynylphenyl) Cr-Cl porphyrin (35 µmol) was used instead of tetra(4-ethynylphenyl) porphyrin. During the silica etching by HF, the Cr-Cl species in porphyrins were converted to Cr-F species, as reported in the literature.⁵

Experimental procedure of sensing tests

The sensing tests were conducted using MA-CMP-F or CMP-F with a size of 0.5 cm × 1 cm. The MA-CMP-F and CMP-F on the PTFE film were transferred to a slide glass plate and attached with a double side tape. DNT, 4NT, 2NT, 4CT, and T solution with concentrations of 0, 0.0025, 0.0050, 0.010, 0.15, 0.020, 0.050, 0.125, and 0.50 mM were prepared in ethanol. Each solution of 3 mL was used for the sensing tests. The emission intensity changes at 517 and 525 nm for MA-CMP-F and CMP-F, respectively, were measured using a JASCO FP-6200. Considering the conventional range of visible light, the excitation wavelength was fixed to 410 nm. After the MA-CMP-F and CMP-F on the glass plates were added to ethanol and left for 2 h until the system reached equilibrium with no changes of emission intensity, the solution was replaced with that with analytes. After leaving the system for 1 h, the changes of emission intensities were measured. K_{sv} values were measured by plotting I_o/I vs [M]; the Stern-Volmer plot (I_o/I = K_{sv} [M] + 1, I_o: the original emission intensity, I: the intensity of emission in the presence of analytes, M: the concentration of substrates in water, R² > 0.99 for linear regression) Recycling tests were conducted using 0 mM and 0.50 mM solutions of 4NT alternatively. Before each sensing cycle for 4 NT, the retrieved MA-CMP-F was washed with excess ethanol three times.

Procedure for computational simulation (Figures S3-5)

In order to shed light on the emission quenching behaviors of MA-CMP-F by nitrotoluenes, we performed the density functional theory (DFT) calculations on the HOMO-LUMO energy levels of MA-CMP-F and substrates. The geometrical optimizations for model systems of MA-CMP-F (CMP-1, CMP-4 and CMP-P refer to Fig. S5 in the ESI for the definition), TNT, DNT, 4NT, 2NT, 4-chlorotoluene (4CT), toluene (T), and additional toluene derivatives having monosubstituent at para position were carried out within B3LYP/light-tier1 level of theory using FHI-aims code.⁶ The convergence criteria were set to 10^{-2} eV/Å except for the CMP-P case. For CMP-P, the PBE/light-tier1 level and 2×10^{-2} eV/Å of relaxation setting were used to conduct the periodic boundary condition (PBC) calculation with full relaxation for both atomic geometries and unit cell parameters, because computational costs for PBC calculations with hybrid functional are enormously expensive. Then, single point calculation at B3LYP/light-tier1 level was performed to estimate the HOMO and LUMO energy levels for CMP-P. It is noted that in a PBC calculation actually the HOMO and LUMO energy levels indicate the valence band maximum and conduction band minimum, respectively. The optimized unit

cell parameters of CMP-P were calculated to be 21.49 Å \times 16.29 Å \times 35.75 Å. The vacuum space of about 30 Å was added along the c-axis to avoid the interactions between 2-dimensional sheets. In addition, single point molar volume calculations at the optimized geometries for TNT, DNT, 4NP and 2NT were carried out to understand the size effect on the sensitivity of experimental sensing behavior using Gaussian 09 package.⁷

Theoretically, it is expected that the LUMO energy levels of MA-CMP-F are located around -2.31 \sim -2.89 eV which can possibly be modulated by the conjugation length of CMP moieties. The calculated relative LUMO energy levels of substrates indicate that the electron transfers from the excited MA-CMP-F to nitrotoluenes including TNT might be favorable to lead fluorescent quenching. On the other hand, the mismatch of LUMO energy levels 4CT and T prevents the induction of emission quenching of CMP materials, which is fully consistent with the experimental fluorescent sensing behavior. It is noteworthy that our DFT results indicate that MA-CMP-F to analyzed for the detection of TNT compound. In the experimental results, the sensing efficiencies of MA-CMP-F towards nitrotoluenes were observed in the increasing order of DNT < 2NT < 4NT. This trend can be analyzed considering both the size and electronic effects of substrates. From the aspect of the diffusion process, we can speculate that smaller substrates (4NT and 2NT) would have higher sensing efficiencies than DNT. (Refer to Fig. S7 in the ESI for the calculated molar volume values and size parameters) In the case of 4NT and 2NT having similar molecular volumes, the calculated LUMO energy level of 4NT is rather lower than that of 2NT. Thus, the 4NT as photo-induced electron accepter has a better quenching efficiency than 2NT.

Reference

- 1. W. Stöber, A. Fink and E. Bohn, J. Colloid Inter. Sci. 1968, 26, 62-69.
- 2. Y. Xu, D. Chang, S. Feng, C. Zhang and J. -X. Jiang, New J. Chem. 2016, 40, 9415-9423.
- 3. Y. J. Shin, MS thesis, Sungkyunkwan University, 2016.
- 4. Z. Wang, S. Yuan, A. Mason, B. Reprogle, D. -J. Liu and L. Yu, Macromolecules 2012, 45, 7413-7419.
- M. H. Kim, T. Song, U. R. Seo, J. U. Park, K. Cho, S. M. Lee, H. J. Kim, Y. -J. Ko, Y. K. Chung and S. U. Son, *J. Mater. Chem. A* 2017, 5, 23612-23619.
- V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, *Comput. Phys. Commun.* 2009, 180, 2175–2196.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Blonino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.; Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Feralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kabayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Corss, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Ciosolowski and D. J. Fox, *Gaussian 09, Revision B.01*, Gaussian, Inc., Wallingford CT, 2010.

Fig. S1 A photograph and SEM images of the 400 nm silica spheres assembled on the glass plate.

Fig. S2 Photographs and SEM images of 200 nm and 1.2 µm silica spheres assembled on the glass plate.

Fig. S3 Consideration of void space portion in MA-CMP-F induced by the 400 nm silica templates (supposing

the closest packing structure of hollow CMP spheres).

R = radius of silica spheres = 200 nm, a = edge distance of unit cell (nm) a = $2 \times 1.414 \times (R + 17.5)$ nm

Void space percent induced by silica templates

- = {[Inter sphere void space + hollow space of 4 hollow spheres]/unit cell volume} × 100%
- = {[unit cell volume volume of 4 hollow CMP spheres + volume of 4 hollow space]/unit cell volume} × 100%
- $= \{ [a^3 4 \times (4/3) \times \pi (R + 17.5)^3 + 4 \times (4/3) \times \pi R^3] / a^3 \} \times 100\%$
- = { $[22.63(R+17.5)^3 16.76(R+17.5)^3 + 16.76R^3]/[22.63(R+17.5)^3]$ × 100%
- = [0.2594 + 0.7406 R³/(R+17.5)³] × 100 % = 84%

Fig. S4 PXRD patterns of MA-CMP-F and CMP-F.

Fig. S5 Model systems (CMP-1, CMP-4, and CMP-P) of MA-CMP-F used for DFT simulation and their

optimized structures.

Fig. S6 The cartesian coordinates (in Å) of optimized geometry for MA-CMP-F model systems.

СМР	-1			С	19.00277123	15.47314981	24.40808200	С	43.59318120	15.10493551	22.83527798
С	0.00059224	0.68109457	-0.00044890	H C	17.14210563	15.03540532 13.92395745	25.37119057 22.71155082	Н	44.36626429 43.11074076	16.37139286 13.60419585	21.28030953 24 29883112
C C	-0.00059158 -1.25071142	-0.68095331 -1.48523383	-0.00047384 -0.11427699	н	18.37455992	12.29195346	22.31796278	ĉ	12.08862927	22.03831943	20.78170938
C	-1.48757635	-2.55271720	0.76334602	С Н	19.94542182 19.17472366	15.09562228	23.44275179 25.00056364	C	12.81807015 13.24956098	23.58808800 21.29818684	22.47457215 20.95173779
C C	-2.19833166 -2.63994475	-1.23618890 -3.31379140	-1.11548089 0.67370933	н	20.42522677	13.59877279	21.97513726	Н	11.35365021	21.71998259	20.05517143
Н	-0.76156727	-2.78074184	1.53154976	C C	21.19550909 31.77270982	15.87748561 8.87789067	23.22203785 23.15943686	С	13.98213769 12.65155452	22.85458902 24.47734186	22.65166217 23.06695284
н	-3.34625888 -2.03093296	-2.00261315 -0.43228031	-1.22308196 -1.81770592	č	31.77450326	7.51537211	23.16667393	c	14.21509021	21.69633097	21.89141378
С	-3.59510761	-3.05119574	-0.32247061	C C	30.54134039 30.22964817	6.70883133 5.63658159	22.94155171 23.78963417	н	13.42190972 14.72052434	20.40798703 23.16672034	20.36403445 23.37620249
H H	-2.81210849 -4.06312160	-4.1211540/ -1.79617143	-2.00496046	č	29.68515148	6.96144629	21.86167664	č	15.40462353	20.93966468	22.07223953
C	1.24830764	-1.48689545	0.11367483	С Н	29.09096397 30.88565646	4.87430831 5.40540241	23.59474285 24.61752146	C C	16.41543787 17.60000006	20.29483038 19.53687629	22.22981253 22.42511026
c	2.19583046	-2.55503417	-0.76347096 1.11515332	с	28.55216742	6.19496371	21.65011580	C	18.55425986	19.92716662	23.37949243
С	2.63583289	-3.31710295	-0.67325817	н С	29.91324853 28.22647408	5.14138322	21.17985198 22.52002676	C	17.85048459 19.70693936	18.38044008 19.18466844	21.66831024 23.56844924
C	3.34309298	-2.00573151	1.22323875	н	28.85927681	4.06333024	24.27026684	Н	18.38119366	20.81821124	23.96582499
H	2.02887864	-0.43418440	1.81707763	н С	33.00994282	6.40415028 6.71470227	23.40023181	н	18.99882729	17.63558004 18.07432148	20.91878010
н	2.80728783	-4.12511556	-1.36995133	C	33.32511914	5.63498024	22.56301191	С	19.94546831	18.01261625	22.83681345
H C	4.06008500 1.25071388	-1.79952211 1 48537869	2.00494992	c	34.46626470	4.87838607	22.76560740	н	19.16796317	16.74846423	24.30073800
č	1.48757378	2.55282189	0.76348281	H	32.67013305	5.39340877	21.73728931	C	21.19576811	17.22988272	23.05302400
C C	2.19834631 2.63995805	1.23637122 3.31386810	-1.11543288 0.67395044	н	33.63441833	7.79323059	25.15134656	č	31.76672742	24.23966285	23.11056669
Ĥ	0.76152368	2.78088590	1.53157411	С Н	35.32988707 34 70073980	5.15901845 4.06151976	23.83758694 22.09818584	C	30.51329852 30.35070733	23.43282357	23.10134154 23.99622452
С Н	3.34625551 2.03098310	2.00283537 0.43245444	-1.22305149 -1.81763488	Н	35.64523928	6.43991062	25.53582631	c	29.48729494	23.67855670	22.17936865
c	3.59511869	3.05134112	-0.32229865	C C	33.02623080 33.18914991	9.68452755 10.75817086	23.14471333 24.03186136	С	29.19691544 31.13745054	21.60133119 22.13957905	24.00025515 24.70275272
Н	4.06316751	4.12130755	-2.00479335	C	34.05210234	9.43185028	22.22449785	С	28.33723771	22.90823253	22.16409373
C	-1.24830616	1.48703673	0.11369293	С Н	34.34321792 32.40261227	11.52199442 10.98946351	24.03036651 24.73690097	H C	29.59576506 28.16451216	24.48212933 21.85954453	21.46531720 23.08272628
c	-2.19585390	1.23856544	-0.70345344 1.11515657	С	35.20237275	10.20171020	22.20357055	н	29.08373381	20.79363394	24.70910936
C H	-2.63581554	3.31724762	-0.67329024	н С	35.37545472	8.62308/48 11.25691659	23.11460417	H C	33.02220581	23.43597663	23.12453613
C	-3.34309688	2.00588151	1.22328736	Н	34.45668083	12.33469653	24.73343502	С	33.18926968	22.36598080	22.23380732
H	-2.02894366 -3 59118247	0.43425497	1.81702786	п С	30.51722797	9.68153357	23.16576012	c	34.34493955	23.68762849	22.23500552
Н	-2.80718607	4.12537464	-1.36979752	C	30.35200672	10.74595441	22.26800664	Н	32.40472763	22.13557606	21.52625220
H	-4.06013643 -4 77434964	1.79959677 3.83407139	2.00488994 0.41687366	c	29.19648717	11.50756882	22.26224606	Н	33.93377568	24.49360279	24.75850263
č	-5.78402337	4.49579368	0.48774057	H C	31.13807774	10.97184931	21.56070517 24.10193690	С	35.37461056	21.86841559	23.15398246
C C	-4.77846886 -5.78785896	-3.83012635 -4.49232859	-0.41638164 -0.48714149	н	29.60228116	8.63424845	24.80452160	Н	35.97297652	23.12780597	24.79147985
C	4.77435579	-3.83391537	0.41684563	С Н	28.16500123 29.08141840	11.24961278 12.31321680	23.18085876 21.55136740	C	32.99974717 33.31114630	26.40619282 27.48300281	22.87921627 23.72160141
C	5.78401533 4.77848272	-4.49565669 3.83027796	-0.41620952	Н	27.56313549	10.00059056	24.82493628	č	33.85799014	26.14595580	21.80280817
С	5.78788298	4.49246772	-0.48698349	C C	26.98062264 25.97133293	12.03170076 12.69854126	23.18145642 23.17760492	С	34.45182463 32.65358050	28.24189244 27.72021102	23.52521762 24.54654387
c	6.97164981 7.88706407	-5.2/2/4590	1.61181573	Ċ	27.05549637	4.36442323	22.31793016	C	34.99300725	26.90906751	21.58964215
C	7.25168402	-6.24539211	-0.41099830	c	26.05621925 36.50359853	3.70352089 4.38820770	22.15347638 24.04722397	H C	35.31879161	25.33596988 27.96673457	21.12513009 22.45449756
н	9.04383000 7.67744560	-4.33631755	2.36505663	C	37.50617843	3.73378061	24.21731146	Н	34.68346845	29.05626216	24.19667003
C	8.41348552	-6.99960397	-0.33620667	c	36.55899625 37.56809915	12.04025906	23.10753529	H C	30.53021438	26.69347322 26.40552599	20.75158557
C	9.31467554	-6.80164902	0.70656014	C	38.68536508	2.96512283	24.41443317	C	30.21798892	27.47979635	22.48750634
Н	9.74139032 8.61674313	-5.68496194	2.49144766	c	38.98612217	1.88698186	23.56536638	c	29.07261410	28.23946340	22.68284049
Н	10.21916838	-7.39143350	0.76153462	С	40.72399260	2.52005574	25.64559162	H	30.87487266	27.71471655	21.66136494
C C	-6.97636960 -7.89106209	-5.26809888 -5.07567384	-0.56337802 -1.61203036	č	40.13976443	1.14144768	23.75934957	Н	29.90081238	25.33980111	25.09005932
C	-7.25852574	-6.24025437	0.41089821	H H	38.30798994 41.39863304	1.64597227 2.76742531	22.75935073 26.45372346	С	28.21183267 28.84555230	27.96761132 29.05207349	23.75531727 22.00940242
н	-9.05137762 -7.67956496	-5.83315898 -4.33079607	-1.6/9077/6 -2.36556507	Н	40.35904631	0.31441668	23.09804488	Н	27.89147858	26.69876436	25.46163226
C	-8.42193437	-6.99200329	0.33592902	C C	24.87989655 23.98790985	2.92837996 3.22398810	21.96494307 20.92060504	C C	27.03922381 26.03791682	28.74192689 29.39964076	23.95808254 24.12289777
C	-9.32263567	-6.79208538	-0.70685863	C	24.58645110	1.85448610	22.82193103	C	26.98122707	21.07574862	23.08154979
H	-9.74647047	-5.67484820	-2.49200837	н	22.83926292 24.20680428	4.04927824	20.74327371 20.25833975	C	25.97190404 36.55950555	20.40894750 21.08715008	23.086/3206 23.16142398
н	-10.22853023	-7.37973682	-0.76182185	С	23.43536605	1.10286854	22.63653491	C	37.56874610	20.42022938	23.16273700
C	-6.97169947 -7 25179084	5.27282447 6 24539366	0.56341643	Н	22.16101437	2.70591634	19.93572195	c	37.49453464	29.39626129	22.08769916
č	-7.88715604	5.08191639	1.61169550	H	23.22180118	0.27911289	23.30378877	C	38.75203043	19.63665722	23.17006282
С Н	-8.41368890 -6.55149218	6.99945898 6.39770848	-0.33642002 -1.21969028	č	24.54489473	14.42650167	22.16874273	c	38.99590719	18.68874245	22.16218415
C	-9.04597688	5.84169340	1.67835086	C	23.82599083 23.39671064	13.32885525	24.19259150 22.18474084	С	40.86357372 39.54451416	19.02361061 20.52126718	24.18785181 24.96326200
н С	-7.67745098 -9.31487939	4.53643348 6.80150392	2.30309035 0.70638472	Н	25.26595568	14.54563846	21.37288549	č	40.14357728	17.91539157	22.18217755
Н	-8.61696854	7.74406393	-1.09374826	С Н	22.67455905 23.99330878	14.09675805 12.60227877	24.19284769 24.97472026	H C	38.27604078 41.09567266	18.56765359 18.05462836	21.36554376 23.20095415
п Н	-9.74155069	3.00480304 7.39118766	0.76128265	С	22.44343226	15.06266701	23.20274374	H	41.59286105	19.16902361	24.97274748
C	6.97642448	5.26819189	-0.56324180	н Н	23.23339450 21.94448805	13.95469282	24.97763153	H C	40.30776861 24.78875246	17.19225799	21.39648066 23.08606200
c	7.89114568	5.07563775	-1.61176489	C	38.75114486	13.49138568	23.10112322	С	23.82443754	19.77805724	22.07574272
С	8.42213756	6.99193314 6 39411982	0.33618088	c	39.71327311	13.33582499	22.08912033	c	24.54855428 22.67308029	18.68003979	24.09/4/812 22.07809104
C	9.05148583	5.83309289	-1.67890180	С	40.14123014	15.21253525	24.09138317	Н	23.98927553	20.50563161	21.29401258
H C	7.67955254 9.32280871	4.33084420	-2.36543398	п С	40.86434438	14.10435470	22.08680872	н	25.27135004	18.56066864	24.89154297
н	8.62722974	7.73600197	1.09359305	H	39.54717902	12.60567181	21.31006446	С	22.44430737	18.04390433	23.06859350
H H	9.74658394 10.22875556	5.67471392 7.37956548	-2.49179063 -0.76161948	й	40.30425558	15.93547207	24.87750852	Н	23.23885274	17.18621260	24.87243952
				H C	41.59509393 42.34332227	13.95882939 15.88732351	21.30329798 23.05471636	C	24.86004757 24.56515263	30.17206376 31.24846472	24.31306955 23.45976776
				Ċ	51.43843132	11.08134456	20.73700506	č	23.96773852	29.87076388	25.35553735
CMP-4	1			C C	50.71285458 50.27924843	9.52138545 11.82208505	22.42211041 20.91617890	С	25.41229297 25.24711489	31.99696343 31.48578414	23.64692856 22.65588913
				H	52.17127359	11.40349833	20.00999820	c 	22.81736629	30.62502312	25.53468276
C C	12.09394936 12.81245447	11.07805813 9.52870822	25.53101775 23.83301632	с Н	49.55057274 50.87999923	10.25545513 8.62784202	22.00835222 23.00781712	H H	24.18789840 23.19751164	29.04355945 32.82261246	26.01498055 22.98241891
Ċ	13.25506407	11.81660618	25.35567601	C	49.31655750	11.41908290	21.85664335	Н	22.13892981	30.38153084	26.34081148
н С	11.36328475 13.97667776	11.39676589 10.26066067	20.201/20/1 23.65060650	н	48.81422547	9.93967697	23.33338825	C	38.97150797	31.23887324	22.75793681
H	12.64174869	8.64008177	23.24090003	C C	48.12867318 47.11921227	12.17612383	22.04634509 22.21094968	C	39.56609871 40.12600001	29.86730787 31.98562149	20.85685770
H	14.2151/292 13.43216586	12.70590701	25.94332540	č	45.93618011	13.57984280	22.41293831	Н	38.29005918	31.47431283	23.56280188
H	14.71109093	9.94826385	22.92215477 24.22470187	C C	45.68407431 44.98518306	14.73799091 13.18871934	21.65928082 23.37021504	С Н	40.71812186 39.34438914	30.61979217 29.04305070	20.68093987 20.19425603
č	16.41638216	12.81572042	24.06299300	č	44.53695817	15.48318020	21.87126739	H	40.34252061	32.80806068	23.24189870
C C	17.60086710 17.85480815	13.57263801 14.72892391	23.86313911 24.61909459	н С	40.39732655 43.83368506	15.04502094 13.93171415	23.56446022	H C	41.39629365 42.34360223	30.37784711 17.23997193	19.8/411433 23.22264996
č	18.55104605	13.18199777	22.90479131	Н	45.15970493	12.29656208	23.95441988	Ċ	51.43733510	22.03966081	25.55824526

С	50.71569330	23.60091301	23.87260647	с	9.18734058	5.47124813	20.43600276	С	2.49901398	12.87175358	20.46306755
С	50.27785344	21.29992503	25.37689105	С	8.35517687	6.78733431	18.58716284	С	2.15993010	14.93911036	18.61227645
Н	52.16873933	21.71663551	26.28631534	С	8.01033472	4.73345199	20.45069384	С	1.32574812	13.61529315	20.45517266
С	49.55312927	22.86786722	23.68421291	С	7.18056724	6.04404104	18.58277872	С	1.14346168	14.68348337	19.55307967
Н	50.88453703	24.49452766	23.28747942	С	6.97604475	5.01423826	19.52930880	С	17.74802565	13.12312550	19.64186836
С	49.31698582	21.70409556	24.43503356	С	11.87596792	6.52627842	19.64151282	С	17.95236631	14.14124920	20.60122174
Н	50.10339614	20.40531723	25.95725290	С	12.06073785	5.47034557	18.72559742	С	18.77764034	12.86137741	18.70966879
Н	48.81814645	23.18451072	22.95816718	С	12.89060212	6.77073994	20.58695745	С	19.12137651	14.89334418	20.59844568
С	48.12872263	20.94824333	24.24287652	С	13.23540810	4.72908816	18.70952155	С	19.94930560	13.60742514	18.72622621
С	47.11870038	20.30450780	24.07603089	С	14.06276279	6.02348210	20.59032846	С	20.13369542	14.65826746	19.64797582
С	45.93584845	19.54643881	23.87103709	С	14.26746095	5.00051274	19.63644675	С	21.38348345	15.46402686	19.59428849
С	44.98677660	19.93787078	22.91199478	С	11.88445746	9.50497164	19.52589878	С	21.36462671	0.55016831	19.54587578
С	45.68228529	18.38803579	24.62392559	С	12.07545304	10.56099897	20.44046187	н	9.97582260	5.24021398	21.15456864
С	43.83552892	19.19504900	22.71564108	С	12.89700757	9.25457253	18.57976609	н	8.48845393	7.58614323	17.85689613
Н	45.16270597	20.82981670	22.32789517	С	13.25360260	11.29672069	20.45442745	н	7.87017360	3.93409747	21.17910348
С	44.53548070	17.64304058	24.40982334	С	14.07208745	9.99707622	18.57349108	н	6.40031398	6.25677835	17.85160532
Н	46.39404247	18.08111994	25.37673227	С	14.28263307	11.02048122	19.52549946	н	11.27319248	5.24690858	18.00354636
С	43.59346137	18.02176236	23.44431432	С	9.38198596	9.51290226	19.64595002	н	12.75771401	7.56527714	21.32231389
Н	43.11400862	19.52181989	21.97956142	С	9.19661861	10.56918763	18.73066729	н	13.37500343	3.93236850	17.97809512
Н	44.36360010	16.75469841	25.00022622	С	8.36926871	9.26979107	20.59387949	н	14.84143597	6.22725695	21.32604707
С	22.53443059	31.68948206	24.68297952	С	8.02303607	11.31219767	18.71745487	Н	11.29027787	10.78911042	21.16360553
Н	21.63662762	32.27484351	24.82539398	С	7.19829476	10.01892325	20.60018626	н	12.76050114	8.45716108	17.84851571
С	11.86747013	23.18438818	21.54077951	С	6.99284935	11.04236880	19.64684879	Н	13.39833960	12.09248680	21.18586713
С	41.00325814	31.68033194	21.53681382	С	5.78490362	11.78026679	19.61539652	Н	14.84944372	9.78926696	17.83779134
С	11.86726416	9.93299265	24.77203087	С	4.74056990	12.41600829	19.56871390	н	9.98259754	10.79141772	18.00655907
С	41.01264971	1.45370727	24.79815006	С	5.76579086	4.28011334	19.56136664	Н	8.50306005	8.47510779	21.32895883
Н	41.91110186	0.87068668	24.94596659	С	4.72043563	3.64618728	19.60998839	н	7.88272344	12.10900595	17.98627140
C	22.55780378	1.40468964	21.59856281	C	15.47620306	4.26403539	19.60226822	н	6.42130645	9.81633601	21.33802973
С	51.66059570	9.92984758	21.48748983	С	16.52059215	3.62898557	19.54816146	н	18.62770927	3.94834109	21.17201655
Н	52.56541486	9.35535818	21.34520943	C	15.49414380	11.75263704	19.55529381	н	17.14490253	1.66929167	17.82114208
С	51.66162849	23.19128175	24.80856181	С	16.53997768	12.38557780	19.60636791	н	20.72371580	2.62869107	21.13624243
Н	52.56668793	23.76498797	24.95249303	C	17.72811456	2.89079223	19.51014950	н	19.22062082	0.32015326	17.81816373
Н	41.90256543	32.26392672	21.39645813	С	18.76261300	3.15513873	20.43593310	Н	2.61707411	3.98637383	17.98680522
Н	10.96119574	23.75836244	21.40575515	С	17.92692320	1.86851652	18.55426068	н	4.08768169	1.67190378	21.31973669
Н	10.96093971	9.36006828	24.91111180	С	19.93439651	2.40926556	20.41495182	Н	0.51960520	2.66696512	18.00244281
Н	21.66136683	0.81694860	21.45737502	С	19.09568950	1.11593503	18.55321052	Н	2.00760975	0.32823309	21.30555630
				С	20.11411097	1.35500229	19.49607958	н	4.11217223	14.40265722	17.87090568
				С	3.51185063	2.90918003	19.63847171	н	2.63575154	12.06498793	21.18390525
				С	2.47982687	3.18437611	18.71289386	Н	2.03010078	15.74489247	17.88903815
CMP-P				С	3.30902052	1.87865214	20.58483490	Н	0.53655607	13.38393509	21.17286664
Cini -1				C	1.30714297	2.43968713	18.72330065	Н	17.17522436	14.33675815	21.34078771
C	10 (2075720	0 70701 (40	10 595 179 17	С	2.13909797	1.12802209	20.57562381	Н	18.63931797	12.06874680	17.97356402
ć	10.630/5/39	8./0591649	19.58547840	C	1.12417012	1.37696927	19.63148886	Н	19.25431597	15.68333010	21.33871159
c	10.02040535	/.55218841	19.53449500	C	3.53233182	13.15357550	19.54110960	Н	20.73506814	13.39082153	18.00016368
ι.	9.5/29805/	0.53257770	19.520/2885	С	3.33067129	14.18996925	18.60083487				

Fig. S7 The calculated molar volumes (in cm³/mol) and size parameters of nitrotoluene substrates (TNT, DNT,

4NP and 2NT) at B3LYP/6-31+G(d,p) level of theory with Gaussian 09 packages.

Fig. S8 The Stern-Volmer plots (I₀/I vs [M]) of the emission quenching of MA-CMP-F and CMP-F by 4NT,

Fig. S9 Low magnification SEM image of MA-CMP-F recovered after the fifth recycle tests.

Fig. S10 Photographs of emission quenching of MA-CMP-F by 4NT.

Fig. S11 The simulated HOMO and LUMO energy levels of additional toluene derivatives.

сно

CN

нс

Fig. S12 (a-c) The emission quenching behavior of MA-CMP-F in ethanol by O_2 and NO_2 in nitrogen (the

gases were bubbled into ethanol solution before measurements.) (d-e) The influence of O2 and NO2 in the emission quenching of MA-CMP-F in ethanol by 4NT (0.015 mM).

Fig. S13 (a) The emission quenching behavior of MA-CMP-F in ethanol by tetrabutylammonium perchlorate

and nitrate and (b) the Stern-Volmer plots.

Fig. S14 (a) UV/vis absorption and (b) IR spectra of MA-CMP-F containing metal-free porphyrin and Cr-F S19

porphyrin moieties. In UV/vis absorption spectra, the Q band peak of MA-CMP-F with metal-free porphyrins appeared at 655 nm (indicated by asterisk), confirming the metal-free porphyrin species. In IR spectra, the vibration peak of MA-CMP-F with Cr-F porphyrins appeared at 1010 cm⁻¹, indicating the Cr-porphyrin species. For the synthetic details, refer to experimental procedures in the ESI.

Table S1 Comparison of the sensing performance of MA-CMP-F with the results (best K_{sv} value) of emissive

Entry	Materials	Substrate	Solvent	ex	K _{sv}	ref
					(M ⁻¹)	
1	Microporous organic polymer with Troger base and TPEs	TNP	ethanol	380	26000	17
2	Nanoporous polymers with silsesquioxane and TPEs	-	chloroform	350	-	18
2	Dynamic covalent imine get	TNP	water	469	32220	19
3	Microporous polymer films with carbazole, thiophene, TPE	TNB	acetonitrile	340	67800	20
4	Nanofibrous PTBPE/PLA films	TNB	vapor	394, 380	-	21
5	Porous polymer films with carbazole and TPE	TNP	acetonitrile	331	64000	22
6	Porous polymer films with carbazole and TPE	DNT	acetonitrile	331	790	22
7	Conjugated porous polymer film	TNT	vapor	396	-	23
8	Conjugated microporous polymers with carbarzole derivatives	DNT	acetonitrile	368	5900	31
9	Covlent organic polymer	TNP	THF	365	14500	32
10	Microporous organic polymers containing ethenylphenyl unit	TNP	THF: H ₂ O=9:1	365	-	33
11	Carbazole based conjugated microporous polymer	4NT	THF	380	4300	34
12	Porous hyperbranched conjugated polymer with triphenylamine	TNT	THF	353	1380	35
13	Sn-porphyrin network film	TNP	water	422	24000	36
14	Covalent organic polymer	TNT	methanol	365	2271	37
15	Highly cross-linked polymer with curcumins	TNP	methanol	372	15200	38
16	Hollow microporous organic network	TNP	THF:H ₂ O=1:2	440	15000	39
17	Conjugated porous polymer with carbazole and triphenylamine	2NP	dioxane	510	61200	40
18	Conjugated microporous polymers with fluorescein	TNP	THF	500	2080	41
19	MA-CMP-F	4NT	ethanol	410	138600	This work

CMP materials in the literature. TNP=2,4,6-trinitrophenol, TNB=1,3,6-trinitrobenzene, DNT=2,4-dinitrotoluene, TNT=2,4,6-trinitrotoluene, 2NP=2-nitrophenol, 4NT=4-nitrotoluene.