Supplementary material

Favorable lithium deposition behaviors on flexible carbon microtube

skeleton enable a high-performance lithium metal anode

Changzhi Sun,^{a,b} Tian Wu,^{a,b} Jianing Wang,^{a,b} WenWen Li,^{a,b} Jun Jin,^{a,b} Jianhua Yang^a and Zhaoyin Wen^{a,b*}

^a CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of

Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Fig. S1 Compressive stress-strain curve of the FCMS

Fig. S2 Fitted Raman spectra of the FCMS

Current collectors	Areal capacity (mAh cm ⁻²)	Current density (mA cm ⁻²)	Yea r	Ref
3D Cu foil	2	0.5	2015	[1]
Au NPs coated hollow carbon	1	0.5	2016	[2]
Ag NPs coated CNF	1	0.5	2017	[3]
Graphitized CFs	8	0.5	2017	[4]
N-doped graphene modified porous Cu	1-4	0.5-1	2018	[5]
3D TiC/C Core/Shell Nanowire	1	1	2018	[6]
3D F-doped graphene	1	0.5-2	2018	[7]
3D nitrogen-enriched carbon sponge	1-3	0.5-1	2018	[8]
flexible carbon microtube skeleton	10	1	our w	ork

Table S1. Comparison of areal capacity and current density in Coulombic efficiency tests of various current collectors.

Fig. S3 Discharge/charge voltage profiles of carbon felt at 1 mA cm⁻² for 10 mA h cm⁻² (a) 1st cycle, (b) 3rd cycle and (c) 4th cycle.

Fig. S4 Cycling performance of FCMS and carbon felt between 0 and 1 V at 1 mA cm⁻².

Fig. S5 Photograph of FCMS after plating $\Box 10 \text{ mAh cm}^{-2}$ of Li at 1 mA cm⁻² for 10th cycle, (a) the side facing separator and (b) the back of it.

Fig. S6 (a) Cu foil after plating 10 mAh cm⁻² of Li and (b) corresponding enlarged SEM image for 10th cycle at 1 mA cm⁻².

Fig. S7 (a) Cross-sectional SEM image of the FCMS@Li electrode after cycling for 1000 h in symmetric cell (1 mA cm⁻² for 2 mAh cm⁻²); (b) corresponding surface SEM image.

Fig. S8 Rate capability of (a) pristine Li symmetric cell and (b) Cu foil@Li symmetric cell at current densities of 0.5, 1, 2 and 5 mA cm⁻² for 1 h.

Ref	Electrolyte (1 M LiTFSI in DOL/DME)	Current density (mA cm ⁻²)	Areal capacity (mAh cm ⁻²)	Cycling performance
[1]	no additive	0.2	0.5	600 h
[2]	-	-	-	-
[3]	no additive	0.5	1	500 h
[4]	1 wt% LiNO ₃	2	1	300 h
[5]	-	-	-	-
[6]	1 wt% LiNO ₃	0.5-3	1	200 h
[7]	2 wt% LiNO ₃	1	2	350 h
[8]	1 wt% LiNO ₃	0.5	0.5	320 h
our work	1wt% LiNO3	1	2	1000 h
		2	2	450 h

Table S2. Comparison of galvanostatic cycling performance of symmetric Li cells with different composite Li anodes.

Fig. S9 Photographs of separators in disassembled (a) Li symmetric cell, (b) Cu foil@Li symmetric cell and (c) FCMS@Li symmetric cell after cycling for 500 h (1 mA cm⁻² for 2 mAh cm⁻²).

Fig. S10 Charge-discharge curves of full cells with (a) pristine Li, (b) Cu foil@Li and (c) FCMS@Li as anodes at 0.2 C, 0.5 C, 1 C, 2 C and 5 C.

Fig. S11 Coulombic efficiencies of three types of full cells.

Fig. S12 Cycling performance of cells with NCM523 cathode and different Li anodes at 0.5 C in a common carbonate-based electrolyte.

References

- 1. C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li and Y.-G. Guo, Nat. Commun., 2015, 6, 8058.
- 2. K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu and Y. Cui, Nature Energy, 2016, 1.
- 3. C. Yang, Y. Yao, S. He, H. Xie, E. Hitz and L. Hu, Advanced materials, 2017, 29.
- 4. T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li and Y. G. Guo, Advanced materials, 2017.
- 5. R. Zhang, S. Wen, N. Wang, K. Qin, E. Liu, C. Shi and N. Zhao, Advanced Energy Materials, 2018, 1800914.
- S. Liu, X. Xia, Y. Zhong, S. Deng, Z. Yao, L. Zhang, X. B. Cheng, X. Wang, Q. Zhang and J. Tu, Advanced Energy Materials, 2018, 8, 1702322.
- 7. Z. Li, X. Li, L. Zhou, Z. Xiao, S. Zhou, X. Zhang, L. Li and L. Zhi, Nano Energy, 2018, 49, 179-185.
- 8. G. Hou, X. Ren, X. Ma, L. Zhang, W. Zhai, Q. Ai, X. Xu, L. Zhang, P. Si, J. Feng, F. Ding and L. Ci, Journal of Power Sources, 2018, 386, 77-84.