Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material

Interfacial proton enrichment enhances proton-coupled

electrocatalytic reactions

Yue Zhao,^a Yu Ding,^b Bin Qiao,^a Kai Zheng,^a Pei Liu,^a Fumin Li,^{*b} Shuni Li,^b and Yu Chen^{*a}

^a Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an 710062, PR China

^b School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China

* Corresponding authors

E-mail: lifuminxs@gmail.com (F.M. Li) and ndchenyu@gmail.com (Y. Chen).

Fig. S1 Digital photographs of K₂PdCl₄/K₂Ni(CN)₄ cyanogel.

Fig. S2 XRD pattern of PdNi bimetallic nanoparticles by using mixture of K_2PdCl_4 and NiCl₂ as precursors.

Fig. S3 SEM images and EDX spectra of (A) PdNi-ANSs, (B) PdNi-ANSs@PEI1800, (C) PdNi-ANSs@PEI10000, and (D) PdNi-ANSs@PEI70000.

Fig. S4 XRD patterns of PdNi-ANSs without PEI, PdNi-ANSs@PEI1800, PdNi-ANSs@PEI10000, and PdNi-ANSs@PEI70000.

Fig. S5 TEM image of commercial Pd black.

Fig. S6 ORR polarization curves of PdNi-ANSs@PEI600 and commercial Pt black in O_2 -saturated 0.5 M H₂SO₄ solution at a sweep rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm.

Fig. S7 ORR polarization curves of PdNi-ANSs@PEI600 in O_2 -saturated 0.5 M H₂SO₄ and 0.5 M H₂SO₄ + 0.5 M CH₃OH solution at a sweep rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm.

Fig. S8 Overpotentials at j=20 and 50 mA cm⁻² for the HER on PdNi-ANSs@PEI600.

Fig. S9 (A) Chronoamperometry and (B) chronopotentiometry curves of PdNi-ANSs@PEI600 in O₂-saturated (E=0.7 V) and N₂-saturated 0.5 M H₂SO₄ (j=10 mA cm⁻²), respectively.

Fig. S10 SEM images and EDX spectra of PdNi-ANSs@PEI600 after the stability test for (A) ORR and (B) HER.

Catalysts	<i>E</i> _{onset} (mV vs. RHE)	η_{10} (mV)	Electrolyte	Ref.	Year
PdNi-ANSs@PEI600	10	25	0.5 M H ₂ SO ₄	This work	2018
Li-Pd ₃ P ₂ S ₈	-52	91	0.5 M H ₂ SO ₄	1	2018
Pd-TiO ₂ nanotube	-	38	1 M HClO ₄	2	2018
Pt@Pd/rGO	-39	56	$0.5 \text{ M H}_2\text{SO}_4$	3	2017
PdMnCo/N-Doped C	-23	39	$0.5 \text{ M H}_2\text{SO}_4$	4	2017
PtPd/N-rich graphene	-14	58	$0.5 \text{ M} \text{H}_2\text{SO}_4$	5	2017
PdBi ₂	-11	78	0.5 M HClO ₄	6	2017
CuPtPd	-1	28	$0.5 \text{ M} \text{H}_2\text{SO}_4$	7	2017
$Pd/g-CN_x$	-12	55	$0.5 \text{ M} \text{H}_2\text{SO}_4$	8	2016

Table S1. HER activity of some newly reported Pd-based electrocatalysts and PdNi-ANSs@PEI600.

References

- X. Zhang, Z. Luo, P. Yu, Y. Cai, Y. Du, D. Wu, S. Gao, C. Tan, Z. Li, M. Ren, T. Osipowicz, S. Chen, Z. Jiang, J. Li, Y. Huang, J. Yang, Y. Chen, C. Y. Ang, Y. Zhao, P. Wang, L. Song, X. Wu, Z. Liu, A. Borgna and H. Zhang, *Nat. Catal.*, 2018, 1, 460-468.
- 2. U. Lačnjevac, R. Vasilić, T. Tokarski, G. Cios, P. Żabiński, N. Elezović and N. Krstajić, *Nano Energy*, 2018, **47**, 527-538.
- X.-X. Lin, A.-J. Wang, K.-M. Fang, J. Yuan and J.-J. Feng, ACS Sustainable Chem. Eng., 2017, 5, 8675-8683.
- 4. R. Zhang, Z. Sun, R. Feng, Z. Lin, H. Liu, M. Li, Y. Yang, R. Shi, W. Zhang and Q. Chen, ACS Appl. Mater. Interfaces, 2017, 9, 38419-38427.
- 5. X. Zhong, Y. Qin, X. Chen, W. Xu, G. Zhuang, X. Li and J. Wang, *Carbon*, 2017, **114**, 740-748.
- 6. S. Sarkar, U. Subbarao and S. C. Peter, J. Mater. Chem. A, 2017, 5, 15950-15960.
- T. T. Chao, X. Luo, W. X. Chen, B. Jiang, J. J. Ge, Y. Lin, G. Wu, X. Q. Wang, Y. M. Hu, Z. B. Zhang, Y. E. Wu, X. Hu and Y. D. Li, *Angew. Chem. Int. Ed.*, 2017, 129, 16263-16267.
- 8. T. Bhowmik, M. K. Kundu and S. Barman, ACS Catal., 2016, 6, 1929-1941.