Electronic supplementary information

Electrochemical Activity of 1T' Structured Rhenium Selenide Nanosheets via Electronic Structure Modulation over Selenium-Vacancy Generation

Yuan Sun,^{abcd} Jie Meng,^{ade} Huanxin Ju,^f Junfa Zhu,^f Qunxaing Li^{ade} and Qing Yang*abcd

^aHefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China.

^bDepartment of Chemistry, USTC, Hefei 230026, Anhui, P. R. China.

^cLaboratory of Nanomaterials for Energy Conversion, USTC, Hefei 230026, Anhui, P. R. China.

^dSynergetic Innovation Center of Quantum Information & Quantum Physics, USTC, Hefei 230026, P. R. China.

^eDepartment of Chemical Physics, USTC, Hefei 230026, Anhui, P. R. China.

^fNational Synchrotron Radiation Laboratory, USTC, Hefei 230029, Anhui, P. R. China

* E-mail: qyoung@ustc.edu.cn; Fax: +86-551-63606266; Tel: +86-551-63600243

1. Experimental Section

Materials Preparation: The ReSe_{2-x} catalysts were prepared using a bottom-up hotinjection colloidal synthetic route by inspiration and modification of our recent work.^{S1} The synthetic procedure was conducted under the protection of argon. First, 5 mL of oleylamine (OAm) in a three-necked flask was heated to 150 °C and maintained at the temperature for 20 min, then the temperature was raised to 320 °C. Then, 0.2 mmol of NH₄ReO₄ and a certain amount of dibenzyl diselenide ((PhCH₂)₂Se₂, 0.12, 0.15, 0.18, 0.20, 0.24 mmol) in 2 mL OAm were injected into the flask, and the mixture was kept at 315 °C for 30 min. Finally, the solution was cooled down to room temperature and the black products was separated by centrifugation. The products were washed with toluene for four times and dried at 70 °C for 6 hours.

ReSe₂ nanospheres were synthesized under the same conditions except that the 2 mL of OAm containing 0.2 mmol of NH_4ReO_4 and 0.3 mmol of $(PhCH_2)_2Se_2$ were injected into the reaction system for instead.

Electrochemical Measurements: Electrochemical measurements were performed in a three-electreode system on a CHI660E electrochemical workstation, using a Ag/AgCl (in saturated KCl sulution) electrode as the reference electrode and a graphite rod as the counter electrode. The working electrodes were prepared as follows: Firstly, the catalysts were cleaned with acetic acid, as reported, ^{S2} then the products were washed with ethanol for four times and dried at 70 °C for 6 hours. Afterwards, 20 mg of the prepared sample was dispersed in 1 mL of ethanol and 30 µL of the catalyst ink was drop-cast onto a carbon paper ($0.5 \times 0.5 \text{ cm}^2$), followed by drying in an oven at 70 °C. All cyclic voltammetry curves for the stability tests were recorded at a sweep rate of 50 mV s⁻¹ and linear sweep voltammetry curves were recorded at 5 mV s⁻¹ for the performance test. The electrochemical impedance spectroscopy measurement was performed at an overpotential of 100 mV from 10⁶ – 0.01 Hz at the amplitude of 5 mV. All the potentials were calibrated with respect to the reversible hydrogen electrode (RHE): E(vs RHE) = E(vs Ag/AgCl) + 0.059 × pH + 0.197.^{S3,S4}

Characterization: The structure and morphology of the as-obtained rhenium selenide nanomaterials were characterized by a Philips X'pert PRO X-ray diffractometer with Cu Ka, $\lambda = 1.54182$ Å, a JSM-6700F and a Hitachi H-7650 for SEM and TEM, respectively. The structure, microstructure and composition of the nanostructures were determined by HRTEM, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), elemental mapping and the corresponding energy-dispersive X-ray spectroscopic (EDX) mapping, performaned on a JEOL JEM-ARF200F TEM/STEM with a spherical aberration corrector. Elemental ratios were detected by inductively-coupled plasma atomic emission spectroscopy (ICP-AES) at Galbraith Laboratories (Knoxville, TN). Raman and photoluminescence spectra were recorded on a Renishaw inVia Raman system with an excitation wavelength of 785 nm. Meanwhile, high resolution synchrotron radiation photoelectron spectroscopy (HR-SRPES) and Ultraviolet photoelectron spectroscopy (UPS) were obtained from the Catalysis and Surface Science End station at the BL11U beamline in the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. HR-SRPES of Re 4f and Se 3d were acquired with photoelectron energy of 200 eV as the excitation source, and the UPS spectra were measured with photon energy of 40 eV using a bias of -5 V in order to observe the secondary electron cut-off. EPR spectra were measured on an EPR spectrometer (JEOL JES-FA200) at 300 K and 9.066 GHz. The specific surface area was measured with the BET (Brunauer-Emmet-Teller) method using a Micromeritic TriStar II 3020 V1.03 (V1.03) instrument (Micromeritics Instrument Corporation, USA).

2. Calculation details

Method: All density functional theory (DFT) calculations were performed using Vienna ab initio simulation package (VASP) ^{S5, S6}. Electron exchange and correlation were treated using the Perdew-Burke-Ernzerhof (PBE) ^{S7} form of the generalized-gradient approximation with van der Waals (vdW) correction proposed by Grimme, ^{S8, S9} due to its good description of long-range vdW interaction. A plane-wave cutoff energy of 400 eV was used and the Brillouin zone was sampled with a 10×10×1 k-point mesh. ^{S10} The convergence of energy and forces were set to be 1×10^{-5} eV and 0.02 eV, respectively. A vacuum region of around 12.0 Å was set along the z direction to avoid the interaction between periodic images. The optimized lattice constants of triclinic ReSe₂ monolayer were predicted to be a = 6.72 Å and b = 6.60 Å, which are close to the previous reported values (a = 6.742 Å, b = 6.697 Å). $^{S11, S12}$ In our calculations, a four-layer (4L) ReSe₂ model was adopted to describe the ReSe₂ nanospheres, where each layer of ReSe₂ consisted of 12 atoms (4 Re and 8 Se atoms). The ReSe_{2-x} nanosheets were simulated as bilayer ReSe_{2-x}, in which each layer consisted of 4 Re atoms and 7 Se atoms. That is to say, one Se vacancy was included in each layer.

The free energies of adsorbed H (ΔG_{H^*}) on different surfaces were calculated by using standard methods. ^{S13} The H adsorption free energy (ΔG_{H^*}) was defined as $\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE} - T\Delta S_H$. Here, ΔE_{H^*} is the H chemisorption energy, ΔE_{ZPE} is the difference in zero point energy, ΔS_H is the difference in entropy between the adsorbed and the gas phase, and T is the temperature (298 K). In our simulations, the H chemisorption energy (ΔE_{H^*}) was defined as $\Delta E_{H^*} = E_{ReSe2+H} - E_{ReSe2} - 1/2 E_{H2}$, where $E_{ReSe2+H}$ and E_{ReSe2} are the total energy of the adsorption system (H adsorbed on ReSe₂ surface) and ReSe₂ substrate surface, respectively, and E_{H2} stands for the energy of gas phase H_2 molecule. We performed normal mode analysis to determine the zero point energy correction, namely, ΔE_{ZPE} can be computed by $\Delta E_{ZPE} = E_{ZPE-H*} - 1/2E_{ZPE-H2}$. Due to the fact that the vibrational entropy can be neglected in the adsorbed state, ^{S10} ΔS_H can be approximated using $\Delta S_H \cong 1/2S_{H2}^0$, where S_{H2}^0 is the entropy of H_2 in the gas phase at standard conditions.

The adsorption energies of H species (ΔE_{H^*}), the relevant contributions to the free energy, and free energy of adsorbed H (ΔG_{H^*}) were summarized in Table S1.

Table S1. The calculated ΔE_{H^*} , ΔE_{ZPE} , $-T\Delta S_H$, and ΔG_{H^*} (in eV).

Species	$\Delta E_{H^{\ast}}$	ΔE_{ZPE}	$-T\Delta S_{\rm H}$	ΔG_{H^*}
H ₂	-	0.265	-0.20	-
H* on 2L-ReSe _{2-x}	-0.29	0.13	-0.20	-0.36
H* on 4L-ReSe ₂	1.53	0.11	-0.20	1.44

Fig. S1 Schematic diagram of ball-and-stick models of triclinic Re-based dichalcogenides (ReS₂ and ReSe₂) (a) view along [001] and (b) view along [100]. The Re atom and Se(S) atom are displayed in blue and yellow, respectively.

Table S2. Elemental ratios of the products prepared from different ratios of NH_4ReO_4 /

 $(PhCH_2)_2Se_2$

ratios of NH ₄ ReO ₄	1.0 6	1.0.75	1.0.0	1.1	1.1.2	1.1.5
/(PhCH ₂) ₂ Se ₂	1.0.0	1.0.75	1.0.9	1.1	1.1.2	1.1.3
ICP-AES detected	1.1.04	1.1.20	1.1.27	1.1 69	1.1.97	1.2
Re:Se mole ratio	1.1.04	1:1.20	1.1.27	1.1.08	1.1.87	1.2
contents of Se	18 80/	10 7%	36.0%	15 0%	6.6%	0
vacancy	40.0/0	40.770	50.070	13.7/0	0.070	0

Fig. S2 TEM images of the products obtained from different ratios of $NH_4ReO_4/(PhCH_2)_2Se_2$: (a) 1:0.6, (b) 1:0.75, (c) 1:0.9, (d) 1:1, (e) 1:1.2 and (f) 1:1.5.

Fig. S3 (a) Scanning electron microscope (SEM) image, (b) TEM image, (c) high resolution TEM image, and (d-g) partial enlargements from (c) of the ReSe₂ nanospheres.

Fig. S4 LSV curves of ReSe_{2-x} samples with different content of Se vacancy. The optimized concentration determined to be 15.9% in the present investigations.

Fig. S5 X-ray diffraction (XRD) pattern of the as-synthesized $ReSe_{2-x}$ nanosheets and $ReSe_2$ nanospheres.

Fig. S6 EDX spectrum of the ReSe_{2-x} nanosheets. The signal of Cu and C arises from the TEM grid made of Cu grids and carbon film.

Fig. S7 (a) EDX spectrum of the $ReSe_2$ nanospheres, (b) HAADF-STEM image and (c) and (d) the corresponding EDX mapping images of the as-synthesized $ReSe_2$ nanospheres. Element Re and Se both distribute homogenously in the sample.

Fig. S8 (a) N₂ adsorption/desorption isotherms, (c) multi-point BET plot, and (e) pore size distribution of the ReSe_{2-x} nanosheets, (b) N₂ adsorption/desorption isotherms, (d) multi-point BET plot, and (f) pore size distribution of the ReSe₂ nanospheres. The multi-point BET surface area, BJH adsorption pore volume and pore diameter are 53.696 m²/g, 0.215 cm³/g and 3.512 nm for the ReSe_{2-x} nanosheets and 89.611 m²/g, 0.185 cm³/g and 1.194 nm for the ReSe₂ nanospheres, respectively.

Fig. S9 CV curves of (a) the $ReSe_{2-x}$ nanosheets, and (b) the $ReSe_2$ nanospheres in the region of 0-0.1 V vs. RHE.

Fig. S10 TEM image of (a) the ReSe_{2-x} nanosheets and (b) the ReSe₂ nanospheres after working as HER electrocatalyst for 12 hours (in 0.5 M H_2SO_4 , overpotential of 250 mV).

nunosneets					
catalyst	Oneset overpotential (mV)	Current density (mA cm ⁻²)	Corresponding overpotential (mV)	Tafel slope (mV/decade)	Reference
Se-vacant	50	10	102	67	This work
1T' ReSe ₂	50	100	249	07	THIS WOLK
monolayer	~100	10	270	76	Nano Research, 2018,
ReSe ₂		10	270	70	11, 1787
Lithiated-	<100	>35	300	84	Nano Lett., 2016, 16,
1T' ReS ₂	<100	~35	500	04	3780
1T' PoSo	80	8	300	67.5	Electrochim., Acta
$11 \text{ KeSe}_2 = 80$	80				2017 , <i>224</i> , 593
1T WS ₂	80,100	0.02	150-175	60	Nat. Mater., 2013, 12,
	80-100				850
S-vacant	_	10	250	82	Nat. Mater., 2016, 15,

Table. S3 Comparison of HER performance in acidic media for the current ReSe_{2-x} nanosheets with other TMDC materials.

2H MoS ₂					48
1T WS ₂	75	10	142	70	Energy Environ. Sci., 2014 , 7, 2608
Se-vacant	105	10	245	74	Chem. Commun.,
2H WSe ₂	125	150	400	- 76	2016 , <i>52</i> , 14266
1T MoS ₂	58		173	53	
1T MoSe ₂	101		209	54	
1T WS ₂	139		232	63	
1T		10			— Adv. Mater., 2018, 30,
$Mo_{0.5}W_{0.5}S$	95		196	58	1/05509
2					
1T MoSSe	49		140	40	
1T MoS ₂	-	10	271	61	J. Am. Chem. Soc., 2018 , 140, 441
1T/2H MoS ₂	143	10	260	60	<i>Chem. Mater.</i> , 2017 , <i>29</i> , 7604
1T/2H MoSe ₂	-	10	152	52	Adv. Mater., 2017 , 29, 1700311
Defected 2H MoSe ₂	120	10	221	67	Small, 2017 , 13, 1700565
$\frac{2H}{Mo_{1-x}W_{x}Se}$	-	10	209	52	Nanoscale, 2017 , 9, 13998
1T' MoTe ₂	-	10	356	127	2D Mater., 2017, 4,
2H MoTe ₂	-	10	650	184	025061
1T' WTe ₂	-	10	430	57	ACS Appl. Mater., Interfaces 2018 , 10, 458
2H MoTe ₂	-	10	380	57	ACS Catal., 2017 , 7, 5706
P-1T-MoS ₂		10	153	43	J. Am. Chem. Soc., 2016 , 138, 7965
Defected- MoS ₂	-	16.3	350	108	<i>Chem. Commun.,</i> 2015 , <i>51,</i> 7470
2H MoSe _{2-x}	170	13	300	98	Nanoscale, 2014 , <i>6</i> , 11046

Table. S4 Comparison of HER performance of the $ReSe_{2-x}$ nanosheets with other catalysts systems.

catalyst	Oneset	Current	Corresponding	Tafel slope	Reference	

	overpotential	density (mA	overpotential	(mV/decade)	
	(mV)	cm ⁻²)	(mV)		
Se-vacant	50	10	102	(7	T1 1
1T' ReSe ₂	50	100	249	- 67	I IIS WORK
MoS ₂ /Graphene	~100	10	~150	41	J. Am. Chem. Soc. 2011 , 133, 7296
Ni ₂ P		20	130		- ,,
nanoparticl es	-	100	180	- 46	J. Am. Chem. Soc. 2013 , 135, 9267
MoB	> 100	20	210 240	55	Angew. Chem. Int. Ed.
Mo ₂ C	>100	20	210~240	56	2012 , <i>51</i> , 12703
porous- Mo ₂ C NW	70	10	200	53	<i>Energy Environ. Sci.,</i> 2014 , <i>7</i> , 387
NiO/Ni- CNT	-	100	<100	51	<i>Energy Environ. Sci.,</i> 2014 , 7, 2608
FeP		10	55		Anomy Cham but Ed
nanowire array/ Ti	16	100	127	38	2014 , <i>53</i> , 12855
MoP	50	30	180	54	Energy Environ. Sci., 2014 , 7, 2624
Fe _{1-x} Co _x S ₂ /	00	20	120	4.6	J. Am. Chem. Soc.
CNT	90	100	170	- 46	2015 , <i>137</i> , 1587
Porous C ₃ N ₄ @N- Graphene	8	50	200	49	ACS Nano, 2015 , 9, 931
NS-doped nanoporous graphene	130	10	390	80	Angew. Chem. Int. Ed. 2015 , 54, 2131

N					
iC	-	10	104	59	Adv. Mater. 2017 , 29, 1605502
0					
2					

P

X

M

oS

NiCo ₂ P _x					
NiCo ₂ S ₄ N		10	210	58	Adv. Funct. Mater.
W/NF	-	10	210	58	2016 , <i>26</i> , 4661
Single W					1 d. Marton 2019 20
Atom//N-	-	10	85	53	Aav. Maler. 2018, 50,
Carbon					1800396
	Λ	100	77	40	J. Mater. Chem. A,
COPS/CP 4	4	100	//	42	2018 , <i>6</i> , 12353

2 /F 30 10 122 45 Adv. Mater. 2018, 30, 1803151 N S/ Fe

Ni fo a m MosyFNS/ FeNi foam hi er ar ch ic al						
fo a m MoSyFNS/ PENI foan hi er ar ch ic al	Ni					
a m MoSylFNS/ FeNi foam hi er ar ar ch ic al	fo					
m MoS ₂ /FNS/ PeNi foam hi er ar 120 10 230 72 Angew.Chem.Int. Ed. 2018, 57, 13302 ch ic al	a					
hi er ar ₁₂₀ 10 230 72 Angew.Chem.Int. Ed. 2018, 57, 13302 ch ic al	MoS ₂ /FNS/ FeNi foam					
er ar 120 10 230 72 Angew.Chem.Int. Ed. 2018, 57, 13302 ch ic al	hi					
ar 120 10 230 72 Angew.Chem.Int. Ed. 2018, 57, 13302 al	er					
	ar ch ic al	120	10	230	72	Angew.Chem.Int. Ed. 2018 , 57,13302

na 1 0 p or 0 US gr ap he ne

hi er ar ch ic al na 1 0 p or

o us gr ap he ne

hierarchical nanoporous graphene

Additional References

- S1. X. Zhou, J. Jiang, T. Ding, J. Zhang, B. Pan, J. Zuo and Q. Yang, Nanoscale, 2014, 6, 11046-11051.
- S2. Guo S and Sun S, J. Am. Chem. Soc., 2012, 134, 2492-2495.
- S3. H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 51, 12703-12706.
- S4. C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem. Int. Ed., 2015, 54,9351-9355.
- S5. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- S6. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- S7. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- S8. S. Grimme, J. Comput. Chem., 2004, 25, 1463-1473.
- S9. S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- S10. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192.
- S11. A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. D. Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing and R. Bratschitsch, *Nano Lett.*, 2017, **17**, 3202-3207.
- S12. Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai and X. Xu, J. Phys. Chem. C, 2017, 121, 23744-23751.

S13. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem. Soc.*, 2005, **152**, J23-J26.