SUPPORTING INFORMATION

Azasydnone – Novel green building block for designing of high energetic compounds

Igor L. Dalinger, *^a Olga V. Serushkina ^a, Nikita V. Muravyev, ^b Dmitry B. Meerov, ^b Evgeniy A. Miroshnichenko, ^b Tatyana S. Kon'kova, ^b Kyrill Yu. Suponitsky, *^c Mikhail V. Vener, ^d and Aleksei B. Sheremetev *^a

 ^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, RussianFederation,
 ^b Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russian Federation
 ^c A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation,
 ^d Mendeleev University of Chemical Technology, Moscow 125047, Russian Federation

Table of Contents	Page
General Experimental	S2
Materials & Caution	S2
Experimental Procedures, Spectral and Analytical data	S2-S4
X-ray analysis of the involved materials	S4-S27
Experimental determination of the enthalpy of formation	S27-S30
Details of the gas-phase enthalpy of formation evaluation	S30-S31
Detonation performance of azasydnones	S31
Thermal stability of the reference materials	S31-S35
References	S35-S37
Spectra	S36-S45

General Experimental

IR spectra were recorded on a BrukerALPHA instrument in KBr pellets. ¹H, ¹³C, and ¹⁴N spectra were acquired on a Bruker AM-300 instrument (300.13, 75.47 and 21.69 MHz, respectively) in DMSO- d_6 at 299 K. The chemical shifts of ¹H and ¹³C nuclei were reported relative to TMS, for ¹⁴N – relative to MeNO₂, high-filed chemical shifts are given with a minus sign. High-resolution mass spectra with electrospray ionization were recorded on a Bruker MicroOTOF II instrument. Elemental analysis was performed on a PerkinElmer 2400 Series II instrument. The reaction progress and purity of the obtained compounds were controlled by TLC on Merck Silicagel 60 F₂₅₄ plates. Visualization of spots on TLC plate was accomplished with UV light (254 nm). Density was determined by helium gas pycnometer AccuPyc II 1340 at 298 K.

Enthalpy of formation values were determined with high-precision combustion bomb calorimeter developed in Semenov Institute of Chemical physics.^[1,2] Impact and friction sensitivities were measured with BAM-type apparatus in a series of experiments according to STANAG procedures.^[3,4] Detonation parameters were calculated with Smirnov^[5] and Kamlet-Jacobs equations.^[6] Thermal stability of the compounds was monitored using DSC 204 HP (Netzsch) apparatus. Samples 0.5-2 mg mass were placed in closed Al pans with laser-cut pinholes and heated at constant rate of 5 K min⁻¹ rates under nitrogen flow (100 ml min⁻¹). Environmental pressure was increased to 2 MPa for selected materials to reveal the decomposition rather than evaporation.^[7]

Materials Most of the reagents and starting materials were purchased from commercial sources and used without additional purification. The starting 3,5-dinitroaniline (1c),^[8] 1-(4-nitrophenyl)-1*H*-1,2,3,4-tetrazole $(4a)^{[9]}$, 1-(3-nitrophenyl)-1*H*-1,2,3,4-tetrazole (4b),^[10] 4-nitroazidobenzene **5a**^[11] and 3-nitroazidobenzene **5b**^[12] were obtained published procedures.

Caution! Although we have encountered no difficulties during preparation and handling of these compounds, they are potentially explosive energetic materials. Manipulations must be carried out by using appropriate standard safety precautions (earthed equipment, Kevlar® gloves, Kevlar® sleeves, face shield, leather coat, and ear plugs).

General procedure for synthesis of hydrazones 2a–d.^[13] A suspension of appropriate amine 1a-d (0.02 mol) in hydrochloric acid (19%, 30 ml) was stirred at 0–5 $^{\circ}$ C and treated by dropwise addition of a solution NaNO₂ (1.86 g, 0.027 mol) in H₂O (6 ml). The mixture was stirred for 40 min, gave a solution of the diazonium salt.

A slurry of NaOH (0.80 g, 0.02 mol), CH_2BrNO_2 (2.8 g, 0.02 mol) and KOAc (4 g) in a mixture of H_2O (2 ml) and EtOH (5 ml) at 0–5°C was treated by dropwise addition a solution of the above diazonium salt and stirred for 40 min. The precipitate that formed was filtered off, washed with water and dried. Obtained hydrazones **2a-d** were used for the next step without further purification.

1-Nitro-N'-(4-nitrophenyl)formohydrazonoyl bromide (2a). Yield 3.36 g (60%).

1-Nitro-N'-(3-nitrophenyl)formohydrazonoyl bromide (2b). Yield 3.35 g (58%).

1-Nitro-N'-(3,5-dinitrophenyl)formohydrazonoyl bromide (2c). Yield 3.61 g (54%).

1-Nitro-N'-(2,4-dinitrophenyl)formohydrazonoyl bromide (2d). Yield 1.67 g (25%).

General procedure for synthesis of azasydnones 3a–d from hydrazones 2a–d.^[14] A appropriate hydrazone 2a–d (3.5 mmol) was added to a solution NH_4NO_3 (0.4 g, 5 mmol) in anhydrous MeCN (30 ml). The mixture was stirred for 24 h at 20°C and filtered off. The filtrate was concentrated *in vacuo* and the residue was dilute with CHCl₃ (100 ml). The resulting solution was filtered through a small layer of silica gel. The filtrate was concentrated *in vacuo*, gave propuct.

3-(4-Nitrophenyl)-1,2,3,4-oxatriazolium-5-olate (3a). Yield 0.65 g (89%), light-yellow needles, DSC mp 167 °C (EtOH) (mp 168–169 °C^[14,15]). ¹H NMR (300.1 MHz, [D₆]DMSO): $\delta = 8.56$ (d, 2H, J = 9.1 Hz), 8.39 (d, 2H, J = 9.1 Hz) ppm. ¹³C NMR (75.5 MHz, [D₆]DMSO): $\delta = 165.09$ (C-O), 150.18, 138.19, 125.70 (CH), 123.23 (CH) ppm. ¹⁴N NMR (21.7 MHz, [D₆]DMSO): $\delta = -14.36$ (NO₂), -75.37 (N⁺) ppm. Found (%): C 40.30, H 1.79, N 26.94. C₇H₄N₄O₄. Calcd. (%): C 40.40, H 1.94, N 26.92.

3-(3-Nitrophenyl)-1,2,3,4-oxatriazolium-5-olate (3b): Yield 0.49 g (67%), light-brown crystals, DSC mp 111 °C (EtOH:H₂O, 1:1). IR: v = 3110 (w), 3092 (w), 1795 (vs), 1527 (s), 1352 (s), 1310 (m), 1192 (m), 990 (w), 825 (m), 739 (w) cm⁻¹. ¹H NMR (300.1 MHz, [D₆]DMSO): $\delta = 8.76$ (s, 1 H, H²), 8.66 (d, ³*J*_{H,H} = 8.3 Hz, 1 H, H⁴), 8.57 (d, ³*J*_{H,H} = 8.2 Hz, 1 H, H⁶), 8.07 (t, ³*J*_{H,H} = 8.2 Hz, 1 H, H⁵) ppm. ¹³C NMR (75.5 MHz, [D₆]DMSO): $\delta = 165.07$ (C-O), 148.34, 134.90, 132.23 (CH), 128.24 (CH), 127.73 (CH), 116.93 (CH) ppm. ¹⁴N NMR (21.7 MHz, [D₆]DMSO): $\delta = -14.92$ (NO₂), -74.75 (N⁺) ppm. Found (%): C 40.34, H 1.86, N 26.84. C₇H₄N₄O₄. Calcd. (%): C 40.40, H 1.94, N 26.92.

3-(3,5-Dinitrophenyl)-1,2,3,4-oxatriazolium-5-olate (3c). Yield 0.36 g (41%), cream solid, DSC mp 153 °C (EtOH). IR: v = 3109 (m), 1807 (s), 1794 (s), 1544 (s), 1347 (s), 1313 (m), 1187 (m), 1078 (w), 909 (w), 733 (s) cm⁻¹. ¹H NMR (300.1 MHz, [D₆]DMSO): $\delta = 9.17$ (s, 1H), 9.12 (s, 2H) ppm. ¹³C NMR (75.5 MHz, [D₆]DMSO): $\delta = 164.84$ (C-O), 148.80, 135.08,

123.00 (CH), 122.75 (CH) ppm. ¹⁴N NMR (21.7 MHz, [D₆]DMSO): $\delta = -18.91$ (NO₂), -77.43 (N⁺) ppm. HRMS (ESI): *m/z* calcd. for C₇H₃N₅NaO₆ [M+Na]⁺ 275.9976; found 275.9971. Found (%): C 33.21, H 0.97, N 27.60. C₇H₃N₅O₆. Calcd. (%): C 33.21, H 1.19, N 27.67.

3-(2,4-Dinitrophenyl)-1,2,3,4-oxatriazolium-5-olate (**3d**). Yield 0.13 g (15%), lightbrown crystals, DSC mp 151 °C (hexane–CH₂Cl₂, 1:1) (mp (decomp.) 125 °C^[15]). IR: ν = 3118 (w), 3096 (w), 1803 (vs), 1619 (w), 1557 (m), 1537 (s), 1342 (s), 1318 (m), 1184 (m), 1033 (w), 969 (w), 916 (w), 848 (w), 821 (w), 743 (m) cm⁻¹. ¹H NMR (300.1 MHz, [D₆]DMSO): δ = 9.12 (d, 1H, *J* = 2.1 Hz), 8.94 (dd, 1H, *J* = 8.7, 2.1 Hz), 8.54 (d, 1H, *J* = 8.7 Hz) ppm. ¹³C NMR (75.5 MHz, [D₆]DMSO): δ = 164.77 (C-O), 150.65, 143.01, 130.45 (CH), 130.19, 129.97 (CH), 122.53 (CH) ppm. ¹⁴N NMR (21.7 MHz, [D₆]DMSO): δ = -21.75 (NO₂), -84.56 (N⁺) ppm. ¹⁵N NMR (30.4 MHz, [D₆]DMSO): δ = 7.95 (N²_{oxatriazoles}), -11.37 (NO₂), -14.71 (NO₂), -74.72 (N⁺), -137.60 (N⁴) ppm. Found (%): C 33.08, H 1.05, N 27.67. C₇H₃N₅O₆. Calcd. (%): C 33.21, H 1.19, N 27.67.

3,5-Dinitroazidobenzene (5c). At 0 °C and stirring, a solution of 3,5-dinitroaniline (0.18 g, 1 mmol) in hydrochloric acid (20%, 4 ml) was treated by a cool solution NaNO₂ (0.13 g, 2 mmol) in H₂O (2 ml). The mixture was stirred for 40 min at 0–5°C and treated by dropwise addition of a cool solution NaN₃ (0.13 g, 2 mmol) in H₂O (3 ml). After 2 h the precipitate that formed was filtered off, washed with water, and air-dried, gave 0.18 g (89%) crude **5c**. The solid was dilute hot CHCl₃ (5 ml), cooled and filtered. The filtrate was diluted with hexane (35 ml) the precipitate that formed was filtered off, washed with water, and air-dried. Yield of pure product **5c** was 0.15 g (80%), light-brown needles, mp 82–84 °C. IR: $\nu = 3144$ (w), 3090 (w), 2131 (s), 2095 (m), 1540 (vs), 1451 (w), 1347 (s), 1329 (s), 1304 (s), 1165 (w), 1074 (m), 920 (w), 888 (m), 814 (w), 729 (s), 702 (w), 645 (w) cm⁻¹. ¹H NMR (300.1 MHz, [D₆]DMSO): $\delta = 8.60$ (s, 1H); 8.32 (s, 2H) ppm. ¹³C NMR (75.5 MHz, [D₆]DMSO): $\delta = 148.72$, 143.12, 120.04 (CH), 114.33 (CH) ppm. ¹⁴N NMR (21.7 MHz, [D₆]DMSO): $\delta = -15.94$ (NO₂), -142.46 (N₃). Found (%): C 34.57; H 1.42; N 33.29. C₆H₃N₅O₄. Calcd. (%): C 34.46; H 1.45; N 33.49.

X-ray analysis of the involved materials.

X-ray experiments for compounds **3a-c**, **4a,b** and **5a-c** were carried out using SMART APEX2 CCD diffractometer (λ (Mo-K α)=0.71073 Å, graphite monochromator, ω -scans) at 100K. Collected data were processed by the SAINT and SADABS programs incorporated into the APEX2 program package.^[16] The structures were solved by the direct methods and refined by the full-matrix least-squares procedure against F^2 in anisotropic approximation. The refinement was carried out with the SHELXTL program.^[17] The details of data collection and crystal structures refinement are summarized in Table 1S for azasydnone derivatives and in Table 2S for tetrazoles and azides along with CCDC numbers which contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

	3 a	3b	3c
formula	$C_7H_4N_4O_4$	$C_7H_4N_4O_4$	$C_7H_3N_5O_6$
fw	208.14	208.14	253.14
crystal system	Monoclinic	Monoclinic	Orthorhombic
space group	$P2_{1}/c$	$P2_{1}/n$	$Pca2_1$
<i>a</i> , Å	12.608(3)	5.3726(12)	9.893(3)
<i>b</i> , Å	5.6499(11)	17.510(4)	18.586(6)
<i>c</i> , Å	12.102(2)	8.6127(19)	9.943(3)
β , deg.	110.626(4)	93.895(5)	90
V, Å ³	806.8(3)	808.4(3)	1828.2(10)
Ζ	4	4	8
d_{cryst} , g·cm ⁻³	1.714	1.710	1.839
F(000)	424	424	1024
μ , mm ⁻¹	0.144	0.144	0.164
θ range, deg.	3.4 - 30.0	2.3 - 28.0	1.1 - 28.3
reflections collected	13624	15218	26673
independent reflections / R_{int}	2354 / 0.0642	1943 / 0.0399	4496 / 0.1133
Completeness to theta θ , %	99.7	100	99.7
refined parameters	136	136	464
$GOF(F^2)$	1.015	1.048	1.043
reflections with $I > 2\sigma(I)$	1631	1562	2655
$R_1(F) (I > 2\sigma(I))^a$	0.0418	0.0350	0.0566
$wR_2(F^2)$ (all data) ^b	0.1062	0.0933	0.1275
Largest diff. peak/hole, $e \cdot \text{Å}^{-3}$	0.304 / -0.224	0.263 / -0.196	0.203 / -0.180
CCDC number	1854060	1854061	1854062

 Table 1S. Crystallographic data for azasydnone derivatives 3a-c.

^a $R_1 = \sum |F_0 - |F_c|| / \sum (F_0);$ ^b $wR_2 = (\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{\frac{1}{2}}$

	4 a	4b	5a	5b	5c
formula	$C_7H_5N_5O_2$	$C_7H_5N_5O_2$	$C_6H_4N_4O_2$	$C_6H_4N_4O_2$	$C_6H_3N_5O_4$
fw	191.16	191.16	164.13	164.13	209.13
crystal system	Monoclinic	Monoclinic	Orthorhombic	Triclinic	Orthorhombic
space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	$Pna2_1$
<i>a</i> , Å	7.2094(8)	11.1512(5)	3.6798(4)	3.7040(2)	9.7268(6)
b, Å	7.7337(9)	17.2780(7)	10.3754(10)	10.7498(5)	8.3199(5)
<i>c</i> , Å	14.2011(16)	12.9735(5)	18.1767(18)	17.5309(9)	9.8210(6)
α, deg.	90	90	90	98.1710(10)	90
β , deg.	93.215(2)	106.2590(10)	90	94.5500(10)	90
γ, deg.	90	90	90	92.6580(10)	90
$V, Å^3$	790.54(16)	2399.6(2)	693.98(12)	687.59(6)	794.77(8)
Ζ	4	12	4	4	4
$d_{cryst}, g \cdot cm^{-3}$	1.606	1.587	1.571	1.586	1.748
F(000)	392	1176	336	336	424
μ , mm ⁻¹	0.125	0.123	0.124	0.125	0.150
θ range, deg.	2.8 - 30.2	2.0 - 29.0	2.3 - 30.2	2.1 - 31.1	3.2 - 29.2
reflections collected	22139	47363	13294	10802	7840
independent reflections/ R_{int}	2339/ 0.0309	6343/0.0419	2066/0.0443	4436/0.0194	2149/0.0263
Completeness to theta θ , %	99.9	99.7	99.8	99.8	99.9
refined parameters	127	506	109	217	148
$GOF(F^2)$	1.049	1.158	1.052	1.030	1.042
reflections with $I > 2\sigma(I)$	2022	5010	1861	3670	1984
$R_1(F) (I > 2\sigma(I))^a$	0.0382	0.0528	0.0333	0.0377	0.0280
$wR_2(F^2)$ (all data) ^b	0.1132	0.1187	0.0875	0.1080	0.0668
Largest diff. peak/hole, <i>e</i> Å ⁻³	0.349/ -0.283	0.302/ -0.241	0.275/-0.180	0.455/-0.231	0.264/-0.173
CCDC number	1854063	1854064	1854065	1854066	1854067

Table 2S. Crystallographic data for tetrazole (4a,b) and azido (5a-c) derivatives.

^a $R_1 = \sum |F_0 - |F_c|| / \sum (F_0);$ ^b $wR_2 = (\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{\frac{1}{2}}$

Coputational Part

The gas phase enthalpy of formation (ΔH_f^0) for compounds of this study was evaluated in the G3B3 approximation^[18] using the so-called "the atomization reaction procedure".^[19] The literature values of ΔH_f^0 for the elements in the standard state were used.^[20] Geometry optimization of isolated molecules was carried out at the M052X/6-311G(df,pd) level of theory that was succesfully utilized in our recent studies on polynitro compounds.^[21] The GAUSSIAN program was used for calculation.^[22] The wave functions obtained from calculation of isolated molecules were analyzed in terms of R. Bader "AIM" topological theory^[23] using the AIMALL program.^[24]

Crystal packing analysis was carried out using two methods. The first one is based on combination of geometrical and energetic approaches, and was adopted in our recent studies on high energetic compounds.^[22,25] It is based on analysis of close and shortened intermolecular contacts between central molecule and its closest environment in the crystal, and estimation of interaction energy between central molecule and each molecule from its closest environment (pair interaction energies or dimerization energies). Molecule is included in the closest environment if at least one atom...atom contact is shorter than sum of van-der-Waals radii^[26] plus 0.5Å. All found intermolecular contacts are separated into three groups according to interatomic distances (d_{1-2}): 1) ordinary van-der-Waals contacts ($d_{1-2} > r_{vdw1} + r_{vdw2}+0.05Å$), 2) shortened contacts ($r_{vdw1} + r_{vdw2}+0.05Å > d_{1-2} > r_{vdw1} + r_{vdw2} - 0.1Å$), 3) close contacts ($d_{1-2} < r_{vdw1} + r_{vdw2} - 0.1Å$). Here, r_{vdw1} and r_{vdw2} are van-der-Waals radii of corresponding atoms. Only shortened and close contacts are given in Tables 5S-16S.

Interaction energy of a molecular pair (dimer) was estimated according to well-known general formula $E_{int} = E_{AB} - E_A - E_B$, where E_{AB} – energy of a dimer, and E_A , E_B – energies of isolated molecules from which this dimer consists of. In the case of one symmetrically independent molecule in the unit cell, $E_A = E_B$. For E_{int} estimation, the structures of a dimer and isolated molecules were taken from the X-ray data without further optimization. The BSSE correction was taken into account.

The second approach for crystal packing analysis was based on recently proposed Δ_{OED} (overlap of electron density) criterion.^[27] It is assumed that upon crystal formation, molecules interact to each other by means of overlap of their electron densities. It means that volume of isolated molecule is larger than that of the molecule in a crystal. Similarly, density of an isolated molecule (d_{mol}) is lower than that in a crystal (d_{cryst}). The latter is the density of the crystal structure obtained from X-ray experiment. The value of d_{mol} can be estimated by analysis of the electron density of optimized isolated molecule in terms of the AIM theory. It is defined as a ratio of molecular mass per molecular volume (the latter is presented as the sum of atomic volumes)

$$d_{\rm mol} = m_{\rm mol}/V_{\rm mol} ; \qquad m_{\rm mol} = M_{\rm mol}/N_{\rm A} ; \qquad V_{\rm mol} = \sum_i V_{\rm at}^{(i)}$$

Here, $M_{\rm mol}$ and $m_{\rm mol}$ are molar and molecular masses, respectively, $N_{\rm A}$ is Avogadro number, $V_{\rm mol}$ and $V_{\rm at}$ are molecular and atomic volumes, respectively. It is convenient to present $d_{\rm mol}$ in g/cm³ units. Evidently, the volume and density of any molecular fragment can be calculated in a similar way. For estimation of $V_{\rm mol}$, isodensity surface of 0.0004 $e/a_{\rm o}^3$ ($a_{\rm o}$ – Bohr radius) was utilized for integration procedure. So estimated molecular volume comprises about 99.8% of all electrons (nearly whole molecule), and charge leakage does not exceed 0.002 $e/Å^3$ that approximately corresponds to numerical error of integration of calculated electron density. It is evident, that difference between crystal and molecular density can be served as a measure of how pronounced is the overlap of molecular electron densities upon crystal structure formation. Therefore, the $\Delta_{\rm OED}$ criterion defined as $\Delta_{\rm OED} = d_{\rm cryst} - d_{\rm mol}$ would characterize tightness of crystal packing. Combined analysis of $d_{\rm mol}$ and $\Delta_{\rm OED}$ values would clarify an origin of the observed crystal packing density. The results on $d_{\rm cryst}$, $\Delta_{\rm OED}$, $d_{\rm mol}$ and $V_{\rm mol}$ (including characteristics of both whole molecules and their fragments) are summarized in Table 3S.

En-	Property	Molecular	30	3h	30	40	4h	50	5h	50	
try		unit	Ja	50	50	4 a	40	Ja	30	50	
1		azasydnone	91.94	91.97	91.87	_	I	I	I	_	
2	Volume	terazole	_	I		87.20	87.35	I	I	_	
3	$(V_{ m mol})$	N_3	_	I		_	I	56.27	56.34	56.22	
4		Whole mol.	252.82	252.96	285.19	249.15	249.56	219.87	220.06	251.91	
5		azasydnone	1.554	1.554	1.555	-	-	-	-	-	
6	Density	terazole	-	-	-	1.315	1.313	-	-	_	
7	$(d_{\rm mol})$	N ₃	-	-	-	-	-	1.240	1.239	1.241	
8		Whole mol.	1.367	1.366	1.474	1.274	1.272	1.240	1.239	1.379	
9	$d_{\rm cryst}$		1.714	1.710	1.839	1.606	1.587	1.571	1.586	1.748	
10	Δ_{OED}		0.347	0.344	0.365	0.332	0.315	0.331	0.347	0.369	

Table 3S. Molecular and crystal volumes ($Å^3$) and densities (g/cm³) and Δ_{OED} criterium for compounds 3-5 from topological analysis of calculated electron densoty and X-ray data.

Molecular and crystal structure analysis

Eight compounds (**3a-c**, **4a,b**, **5a-c**) were investigated by the single crystal X-ray diffraction at 100K. Their molecular structures are depicted in Fig. 1S.

Figure 1S. General view of structurally charatrized azasydnones, tetrazoles and azides.

The structures of tetrazole **4a** (refcode NAGGOU)^[28] and azide **5a** (refcode NIPHAZ)^[29] were known earlier, however those experiments were carried out at room temperature. An asymmetric unit cell of compounds **3a**, **3b**, **4a**, **5a**, **5c** contains one molecule. Two symmetrically independent molecules are found in crystals of **3c** and **5b**, while for **4b**, three symmetrically independent molecules are observed. In crystals of **3c** and **4b**, one of symmetrically independent molecules is totally disordered over two positions. They are denoted as A', A" for compound **3c**, and A", B" for compound **4b**.

Crystal packing of compounds **3b,c**, **4b**, **5b,c** is presented in Figures 2S-6S (those for compounds **3a**, **4a**, **5a** can be found in the main text). The results on geometrical and energetic analysises of the crystal packing are given for compounds **3-5** in Tables 5S-16S. Results on all independent molecules are given in separate tables. In those cases when molecule is disordered, the system of close contacts and pair energies were calculated for all disordered parts separately. In such cases pair energy is calculated by averaging as follows:

(i) for interaction between two disordered molecules

 $E_{\text{cont}} = E(\text{part1}...\text{part1}) \times p_1^2 + E(\text{part1}...\text{part2}) \times p_1p_2 + E(\text{part2}...\text{part1}) \times p_1p_2 + E(\text{part2}...\text{part2}) \times p_2^2;$

(ii) for interaction between ordered molecule and disordered molecule

 $E_{\text{cont}} = E(\text{ordered mol. ... part1}) \times p_1 + E(\text{ordered mol. ... part2}) \times p_2.$

Here p_1 and p_2 are occupancies of each part of the disorder $(p_1 + p_2 = 1)$.

From the results it can be seen that in tetrazole derivatives, $\pi...\pi$ stacking interactions provide sizable contribution into crystal packing stabilization. The tetrazole ring actively participates in those interactions. Role of stacking interactions in azasydnones is significantly less pronounced. In azides, stacking interactions take place also, however azido group is not involved in those interactions. In Table 4S we compared contributions of $\pi...\pi$ stacking into total crystal structure stabilization by calculation of a number of pair interactions which are formed by $\pi...\pi$ stacking and their energies.

		\mathcal{O}				2	1 0	,
	3a	3b	3c	4 a	4b	5a	5b	5c
$\pi\pi$ stacking is observed for <i>n</i> molecular pairs	0	1	2	2	3.3	2	2	0
contribution to the total energy, %	0	18	18	24	35	25	24	0

Table 4S. Contribution of π ... π stacking interactions into stabilization of crystal packing^{*}.

* for those structures in which two or more (Z'>1) symmetrically independent molecules are observed, we averaged percentage contribution and *n* value over Z'.

Figure 2S. Left: molecular structure of compound **3b** along with its lateral view to show planarity/unplanarity; right: crystal packing fragment: corrugated layers are built up via C-H...O and π ... π stacking interactions. Interlayer interactions are provided by C-H...O and O... π contacts.

Figure 3S. Left: molecular structure of compound **4b** along with its lateral view to show planarity/unplanarity; right: Crystal packing fragment. H-bonded layers are connected by stacking interactions (vertical dashed lines)

Figure 4S. Left: molecular structure of compound **5b** along with its lateral view to show planarity/unplanarity; right: Crystal packing fragment. H-bonded layers are connected by weak Ph...Ph stacking interactions (vertical dashed lines)

Figure 5S. Left: molecular structure of compound **3c** along with its lateral view to show planarity/unplanarity; right: Crystal packing fragment. Pojection on *ab* plane; layers perpendicular to the plane of figure are separated by green dashed lines; each layer consists of only one type of molecules (A or A'); interactions in the layer are provided by C-H...O H-bonds $O...\pi$ and stacking interactions; layers are connected to each other by $O...\pi$ interactions.

Figure 6S. Left: molecular structure of compound **5c** along with its lateral view to show planarity/unplanarity; right: Crystal packing fragment: corrugated layers are built up via C-H...O and O... π interactions. Interlayer interactions are provided by O... π and N... π contacts.

Table 5S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **3a** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atomi	c pair	Distance	Type of interaction	Energy
1	x,-1+y,z	No	close co	ontacts	vdW	-3.0
2	x,1+y,z	No	close co	ontacts	vdW	-3.0
3	1-x,-1-y,2-z	No	close co	ontacts	vdW	-6.3
4	1-x,-y,2-z	O2 O2 C7	C7 H7A O2	3.249 2.531 3.249	C-HO h-bond	-9.7
		H7A	O2	2.531		
		O4	C4	3.323		
_		O4	H4A	2.527		1.0
2	2-x,-2-y,2-z	C4	O4	3.323	C-HO n-bond	-4.0
		H4A	O4	2.527		
6	2-x,-1-y,2-z	No	close co	ontacts	vdW	-0.1
		N1	O2	2.984		
7	1-x,-1/2+y,1.5-z	N2	O2	2.899	Οπ	-5.8
		C1	01	3.124		
		01	C1	3.124		
8	1-x,1/2+y,1.5-z	02	N1	2.984	Οπ	-5.8
		02	N2	2.899		
9	2-x,-1/2+y,2.5-z	No	close co	ontacts	vdW	-2.5
10	2-x,1/2+y,2.5-z	No	close co	ontacts	vdW	-2.5
11	$x = 1.5 x = 1/2 + \pi$	C3	O3	3.226	CH Oh bond	15
11	л,-1.J-y,-1/2+Z	H3A	O3	2.430		-1.5
12	$x = 1.5 \times 1/2 + 7$	03	C3	3.226	CH Ob bond	1.5
12 x	x,-1.5-y,1/2+z	03	H3A	2.430		-1.5

Table 6S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **3b** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atom	ic pair	Distance	Type of Interaction	Energy
1	1 v v 1 z	H5A	01	2.589	CH Oh bond	10
1	-1+x,y,-1+z	C5	01	3.666	C-110 II-0011d	-4.9
2	1 + x + y + 1 + z	01	H5A	2.589	C-H Oh-bond	-49
2	1 + X, Y, 1 + Z	01	C5	3.666	C-110 II-00lld	- - -,,/
3	-1+x,y,z	No	close con	tacts	vdW	-0.2
4	1+x,y,z	No	close con	tacts	vdW	-0.2
5	x v _1⊥z	O4	01	2.998	Οπ	-5.2
5	x,y,-1+2	O4	C1	2.858	0 <i>n</i>	-5.2
6	v v 1 + 7	01	O4	2.998	Ο π	5.2
0	∧,y,1⊤Z	C1	O4	2.858	0 <i>n</i>	-3.2
7	-1-x,-y,-z	No	close con	tacts	vdW	-0.2
		O2	C6	3.301		
8	-1-x,-y,1-z	O2	H6A	2.529	C-HO h-bond	-12.3
		C6	O2	3.301		
		H6A	O2	2.529		
		O2	C2	3.197		
9	-x,-y,1-z	N3	C1	3.112	$\pi\pi$	-9.8
		C1	N3	3.112	stacking	
		C2	O2	3.197		
		O4	C3	3.201	C-H O h-bond	
10	-1/2+x,1/2-y,-1/2+z	O4	H3A	2.313	N NO ₂	-2.3
		N4	N1	2.990	11102	
		N1	N4	2.990	C-H O h-bond	
11	1/2+x,1/2-y,1/2+z	C3	O4	3.201	N NO	-2.3
		H3A	O4	2.313	111102	
12	-1/2+x,1/2-y,1/2+z	C2	03	3.128	Οπ	-2.9
13	1/2+x,1/2-y,-1/2+z	O3	C2	3.128	Οπ	-2.9

Table 7S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A of compound **3c** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.*

Entry	Symmetry Code	Atom	ic pair	Distance	Type of Interaction	Energy	Molecular pair
1		C5	O2	3.118	CIL OILbard	25	
1	x,y,-1+Z	H5A	O2	2.447	C-HO H-Dond	-3.5	AA
•	1.	O2	C5	3.118		2.5	
2	x,y,1+z	O2	H5A	2.447	C-HO n-bond	-3.5	AA
		N5	N3	3.050			
		O5	N2	3.024	ππ.		
3	1-x, 2-y, -1/2+z	05	N3	3.156	stacking	-5.4	AA
		05	C2	3.062	NO ₂ sydnone		
		O6	C1	3.197	- 5		
		N2	05	3.024			
		N3	N5	3.050	ππ.		
4	1-x, 2-y, 1/2+z	N3	05	3.156	stacking	-5.4	AA
	, ,,	C1	06	3.197	NO ₂ sydnone		
		C2	05	3.062	- 5		
		C3	06	3.328			
5	-1/2+x, 2-y, z	C4	06	3.041	weak Ο…π	-2.1	AA
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C5	06	3.351			
		06	C3	3.328			
6	1/2+x, 2-y, z	06	C4	3.041	weak Ο…π	-2.1	AA
		06	C5	3.351			
_	1/2 1/2	N4	N1	3.287		• •	
7	1/2-x,y,-1/2+z	03	N1	3.008	weak NNO_2	-2.0	AA
		N1	N4	3.287	1.32.320		
8	1/2-x,y,1/2+z	N1	03	3.008	weak NNO_2	-2.0	AA
-		C2	02	3.404	_		
9	1.5-x,y,-1/2+z	C7	02	2.923	Οπ	-6.1	AA
		02	C2	3 404			
10	1.5-x,y,1/2+z	0^2	C7	2 923	Οπ	-6.1	AA
		03	C4'	3.002		-4.2	
114'	1 - x 1 - y 1/2 + z	03	N4'	2 822	Οπ		Δ Δ'
11/1	1 A,1 y,1/2+2	03	03'	3 004	0 <i>n</i>		1111
		03	N1"	3 043			
		03	N2"	2.847			
114"	1.v 1.v 1/2+7	03	N3"	3 106	Οπ	-43	Δ Δ"
	1 A,1 ,,1/2/2	03	C1"	3.317	0		11
		03	C4"	3.286			
12A'	2-x, 1-y, 1/2+z	cat	not exist	too close C	C1 O2 contact of 2 57	8Å	A A'
12A''	2 x, 1 y, 1/2 + z 2-x.1-y.1/2+z	No	close con	tacts	vdW	-1.6	AA'
	, , ,	N4	N3'	2.976			
		03	N3'	3.122			
13A'	-1/2+x.1-v.z	C3	O2'	3.277	Νπ	-7.5	AA'
-	· · · · · · · · · · · · · · · · · · ·	C4	O2'	3.102	Οπ		
		C5	O2'	3.256			
		N4	03"	2.970			
13A''	-1/2+x,1-y,z	C4	03"	3.162	Οπ	-5.7	AA"
		01	N2'	3.030			
14A'	-1/2+x.1-y.1+z	01	C2'	3.032	Οπ	-2.8	A A'
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01	C3'	3.255	0	2.0	
		01	C2"	3.096			
14A''	-1/2+x,1-y,1+z	01	C3''	3.126	weak Oπ	-0.3	AA"

* Interatomic contacts that include minor part of the disorder (A") are given in bold.

Table 8S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A'(A") of compound **3c** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.*

Entry	Symmetry code	Atom	ic pair	Distance	Type of interaction	Energy	Molecular pair
1'	1+x,y,z	No	close cont	tacts	vdW	-0.4	A'A'
		01'	01"	3.086			
1'-''	1+x,y,z	N1'	01"	3.005	weak Oπ	-4.2	A'A''
		C7'	O2''	3.361	С-НО		
		H7'A	O2''	2.422			
1''-'	1+x,y,z	No	close contacts		vdW	-0.3	A"A'
1"	1+x,y,z	Cann	ot exist, t	oo close O6'	"O2" contact of 2.2"	76Å	A"A"
2'	-1+x,y,z	No	o close con	tact	vdW	-0.4	A'A'
2'-''	-1+x,y,z	No	close con	tact	vdW	-0.3	A'A''
		01"	01'	3.086			
2''-'	-1+x,y,z	01"	N1'	3.005	weak Oπ	-4.2	A"A'
		O2''	C7'	3.361	С-НО		
		02''	H7'A	2.422			
2''	-1+x,y,z	Cann	ot exist, t	oo close O6'	'O2" contact of 2.2'	76Ă	A"A"
		O5'	C2'	3.026			
3'	2-x,1-y,-1/2+z	O5'	C3'	3.275	Οπ	-4.1	A'A'
		O5'	C7'	3.119			
		05'	C2''	3.148			
		05'	C3''	3.153	_		
3'-"	2-x,1-y,-1/2+z	05'	C4''	3.190	Οπ	-3.9	A'A"
		05'	C6''	3.217			
		05'	C7''	3.180			
3''-'	2-x,1-y,-1/2+z	No	close cont	tacts	vdW	-1.8	A"A'
3"	2-x,1-y,-1/2+z	No	close cont	tacts	vdW	-1.6	A"A"
		C2'	O5'	3.026			
4'	2-x, 1-y, 1/2+z	C3'	O5'	3.275	Οπ	-4.1	A'A'
		<u>C7'</u>	05'	3.119		1.0	
4'-''	2-x,1-y,1/2+z	No	close cont	tacts	vdW	-1.8	A'A''
		C2''	05'	3.148			
		C3''	05'	3.153		• •	
4''-'	2-x,1-y,1/2+z	C4''	05'	3.190	Οπ	-3.9	A''A'
		C5"	05'	3.222			
		C6"	05'	3.217			
411	2 - 1 - 1/2 -	<u> </u>	05	3.180		1.(A 11 A 11
4	2-x,1-y,1/2+z		close cont		vaw	-1.0	A''A''
51	1/2 1	H5 A		2.244		17	
5	-1/2+X, 1-Y, Z	04	CO N51	3.173	C-HO	-1./	A'A'
		04	IND OC'	2.922	NO_2NO_2		
51 11	1/2	<u> </u>	00	3.033	Of ll contract of 2.94	11 Å	
5-	-1/2+x,1-y,z		IOU EXISU, U	2 152	00 contact of 2.84	IA	AA
5''-'	-1/2+x,1-y,z	02		3.152	Οπ	-5.7	A"A'
		<u>02</u> N2!!		3.172			
511	1/2	INJ N2!!	C0 N5''	5.54 <u>2</u> 2.067	N –	15	A 11 A 11
3	-1/2+x,1-y,z	INJ N2''	IN5 05''	2.907	Νπ	-4.5	AA
		N5'	03	2 022	СЧО		
6'	1/2 + x + 1 + x = 7	N3 06'	04 C5'	2.922	С-пО NO NO	17	Δ' Δ'
0	1/2+x,1-y,Z	06	US H5'A	2 244	11021102	-1./	AA
		00	05'	3 033			
		C5'	03	3.055			
6'-''	1/2+x,1-y,z	CS	02	3.152	Οπ	-5.7	A'A''
611 1	1/2 w 1 w 7	Corr	04	3.174	Of" contact of 2.94	11 Å	
U -	1/2+x,1-y,Z	Cani	ioi exist, l	too close C5	00 contact of 2.84	†1A	AA

		C6''	N3''	3 342			
6''	1/2+x,1-y,z	N5''	N3"	2 967	Νπ	-4.5	A"A"
			02'	2.907			
			03	5.058	ata alvin a		
71	1.5		05 N4	3.145	$\pi \dots \pi$ stacking	26	A.1. A.1
1	1.3-x,y,-1/2+z	05	N4 [*]	2.997	between NO_2 and	-3.6	A'A'
		05'	03	2.979	NO_2 and Ph		
		05'	04'	2.960			
7'-''	1.5-x,y,-1/2+z	Canı	10t exist, t	oo close O5	'C1" contact of 2.72	23A	A'A''
7''-'	$1.5 - x \cdot y - 1/2 + z$	02''	N3'	2.930	Ο. π	-5.8	A". A'
'	1.5 A,y, 1/2/2	O2''	C1'	3.370	0		1111
		N5''	01"	3.127	$\pi \dots \pi$ stacking		
7''	1.5-x,y,-1/2+z	O5''	01"	2.862	between NO ₂ and	-4.6	A"A"
		O5''	C1''	3.003	sydnone		
		N4'	O5'	2.997			
		O3'	C5'	3.058	$\pi \dots \pi$ stacking		
8'	1.5-x.v.1/2+z	O3'	C6'	3.145	between NO ₂ and	-3.6	A'A'
-	·- • • • • •	03'	05'	2.979	NO ₂ and Ph		
		04'	05'	2 960			
		N3'	02"	2.930			
8'-''	1.5-x,y,1/2+z		02"	2.950	Οπ	-5.8	A'A''
Q11 1	15 y y 1/2 7	Con	0^{2}	$\frac{ 3.370}{ 3.370}$	C111 contect of 2.71	2 Å	A 11 A 1
0 -	1.5-x,y,1/2+z		IOU EXISU, U	2 127		JA	AA
011	1.5 1/2.	01	IN5"	3.127	$\pi \dots \pi$ stacking	10	
8''	1.5-x,y,1/2+z	01"	05"	2.862	between NO_2 and	-4.6	A''A''
		<u>CI''</u>	05"	3.003	sydnone		
9'	2.5-x,y,-1/2+z	Car	not exist,	too close N1	'O2' contact of 2.572	A	A'A'
9'-''	2.5-x,y,-1/2+z	No	close	contacts	vdW	-3.7	A'A"
		C7''	C1'	3.314			
9''-'	2.5-x,y,-1/2+z	O6''	N1'	3.062	$\pi \dots \pi$ stacking	-5.1	A"A'
		O6''	N2'	2.990			
	2.5-x,y,-1/2+z	O6''	C2''	3.015			
9''		O6''	N4''	2.843	NO_2NO_2	-4.6	A"A"
		O6''	O4''	2.875			
10'	2.5-x.y.1/2+z	Car	not exist.	too close N1	'O2' contact of 2.572	Å	A'A'
		C1'	C7"	3.314			
10'-''	$2.5 - x \cdot y \cdot \frac{1}{2} + z$	N1'	06"	3.062	π π stacking	-5.1	A' A''
10	2.0 3,9,17272	N2'	06"	2,990	nin stacking		11
10''-'	2.5-x y 1/2+7	No	close cont	acts	vdW	-37	Δ" Δ'
10 -	2.5-A,y,1/2+L	<u> </u>		2 015	vuvv	-3.7	ΑΑ
10!!	25 - 1/2	C2 N4''	00	3.015 2.942		16	A 11 A 11
10	2.5-X,y,1/2+Z	1N4 04''		2.045	NO_2NO_2	-4.0	AA
		04	00	2.000			
1.1.1	1 1 1/0	C4	03	3.002	0	1.0	
11'	1-x, 1-y, -1/2+z	N4'	03	2.822	Οπ	-4.2	A'A
		03'	03	3.004			
		NI''	03	3.043			
111	1 - 1 - 1/2 -	N2" N2U	03	2.847	0 -	12	A 17 A
11	1-x, 1-y, -1/2+2	N5 C1''	03	3.100	0π	-4.5	AA
		C1 C4''		3 286			
12'	$2_{-x} 1_{-x} - 1/2 + 7$	Car	not evist	13.200	C1 contact of 2 578	Å	Δ' Δ
12"	$2^{-1}, 1^{-1}, 2^{-1}$	Cal No	close cont	acts		.16	
14	2-A,1-y,-1/2+Z	02'		2 277	vuvv	-1.0	AA
		02		3.277			
121	1/2 - 1	02	C4	3.102	NT	7.5	
13'	1/2+x,1-y,z	02'	C5	3.256	Νπ	-7.5	A'A
		N3'	N4	2.976	Οπ		
		N3'	03	3.122			
13"	1/2+v 1. v 7	03"	N4	2.970	0 7	-57	A.'' A
15	1/2TA,1"y,2	03"	C4	3.162	0	-5.7	AA

14'	1/2+x,1-y,-1+z	N2' C2' C3'	01 01 01	3.030 3.032 3.255	Οπ	-2.8	A'A
14''	1/2+x,1-y,-1+z	C2'' C3''	01 01	3.096 3.126	weak Oπ	-0.3	A"A

* Interatomic contacts that include minor part of the disorder (A") are given in bold.

Table 9S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **4a** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atom	ic pair	Distance	Type of interaction	Energy
		N2	C4	3.376		
1	x,-1+y,z	N2	H4	2.447	H-bond	-6.6
		H7	01	2.553		
		C7	01	3.483		
		01	H7	2.553		
2	x,1+y,z	01	C7	3.483	H-bond	-6.6
		C4	N2	3.376		
		H4	N2	2.447		
2	v 1/2 v 15 g	N4	C1	3.239	H hand	4.4
3	-x,-1/2+y,1.3-Z	N4	H1	2.300	n-bolia	-4.4
4		C1	N4	3.239	II hand	1 1
4	-x,1/2+y,1.3-Z	H1	N4	2.300	n-bolia	-4.4
5	1-x,-1/2+y,1/2-z	No	o close co	ntacts	vdW	-1.6
6	1-x,1/2+y,1/2-z	No	o close con	ntacts	vdW	-1.6
		N4	C5	3.374		
		C1	C5	3.355		
		C1	C6	3.277	$\pi\pi$	
7	-x,-y,1-z	C2	C2	3.385	stacking	-4.4
		C5	N4	3.374		
		C5	C1	3.355		
		C6	C1	3.277		
		N2	N5	3.153		
8	1-x,-y,1-z	N5	N2	3.153	ππ	-4.2
		C2	C6	3.300	stacking	
		C6	C2	3.300		
9	x,1/2-y,-1/2+z	No	o close co	ntacts	vdW	-1.4
10	x,1/2-y,1/2+z	No	o close co	ntacts	vdW	-1.4

Following three Tables (10S-12S) describe three independent molecules of compound **4b**. We denoted them as A, A' and A". However, third independent molecule is totally disordered. Therefore A" stands for the major part while B" stands for the minor partis. Contacts that include minor part of the disorder are given in bold.

Table 10S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A of compound **4b** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry code	Atom	ic pair	Distance	Type of interaction	Energy	Molecular pair
1	1-x,-y,1-z	No	close co	ontacts	vdW	-3.4	AA
2	-1/2+x,1/2-y,-1/2+z	No	close co	ontacts	vdW	-3.0	AA
3	1/2+x,1/2-y,1/2+z	No	close co	ontacts	vdW	-3.0	AA
		N2	C3'	3.296			
		N5	N2'	3.161			
4	x,y,z	C1	C6'	3.376	$\pi \dots \pi$ stacking	-4.4	AA'
	•	C2	C1'	3.459			
		C3	N2'	3.259			
~		N3	C7'	3.220	CH Nhhail		A A 1
2	-x,-y,-z	N3	H7'	2.274	C-HN n-bond	-5.5	AA
6	1-x,-y,1-z	No	close co	ontacts	vdW	-5.4	AA'
7	1/2 1/2 1/2 -	O2	C5'	3.212	CII. Ohhard	26	A A 1
/	1/2-x,-1/2+y,1/2-Z	O2	H5'	2.574	C-HO n-bond	-3.0	AA
0	1/2 + 1/2 + 1/2 =	C7	N4'	3.184	C II N	4.2	A A'
8	1/2-x, 1/2+y, 1/2-z	H7	N4'	2.275	С-пN	-4.2	AA
		C1	N4A	3.227			
9A"	x,y,z	C4	C2A	3.455	$\pi \dots \pi$ stacking	-3.1	AA"
		C6	C7A	3.365			
		C5	C2B	3.553			
9B''	x,y,z	C6	N5B	3.362	$\pi \dots \pi$ stacking	-3.6	AB''
		C6	C3B	3.534			
		N2	C3A	3.365			
10 4 "	v v 1 z	N3	N5A	3.100	staaking	57	A A "
10A	-x,-y,1-Z	N5	N4A	3.147	nn stacking	-3.7	AA
		C2	N2A	3.262			
		N5	O1B	3.031			
1001		C3	O1B	3.226	staaling	4.2	A D''
IUD	-x,-y,1-z	O2	N5B	3.025	$\pi \dots \pi$ stacking	-4.2	АD
		N3	C7B	3.237			
11A"	-1/2+x,1/2-y,-1/2+z	No	close co	ontacts	vdW	-2.2	AA"
11B''	-1/2+x,1/2-y,-1/2+z	No	close co	ontacts	vdW	-0.3	AB''

Table 11S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A' of compound **4b** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry code	Atomi	ic pair	Distance	Type of interaction	Energy	Molecular pair
1'	-х,-у,-z	No	close co	ontacts	vdW	-3.8	A'A'
2'	-х,-у,-z	No	close co	ontacts	vdW	-3.8	A'A'
3'	-1/2+x,1/2-y,-1/2+z	No	close co	ontacts	vdW	-2.5	A'A'
4'	1/2+x,1/2-y,1/2+z	No close contacts		ontacts	vdW	-2.5	A'A'
		C3'	N2	3.296			
5'(4)		N2'	N5	3.161		-4.4	
	x,y,z	C6'	C1	3.376	$\pi \dots \pi$ stacking		A'A
		C1'	C2	3.459			
		N2'	C3	3.259			
6'(5)	V V 7	C7'	N3	3.220	СЧ М	5 5	A' A
0(3)	-x,-y,-z	H7'	N3	2.274	С-пN	-3.5	AA
7'(6)	1-x,-y,1-z	No	close co	ontacts	vdW	-5.4	A'A
8'(7)	$1/2 \times 1/2 \times 1/2 =$	C5'	O2	3.212	weak	-3.6	<u>^' ^</u>
8(7)	1/2-x, 1/2+y, 1/2-z	H5'	O2	2.574	С-НО		AA
0'(8)	1/2 = 1/2 + 1/2 =	N4'	C7	3.184	СИМ	4.0	A' A
9(0)	1/2-x,-1/2+y,1/2-z	N4'	H7	2.275	С-пN	-4.2	AA
		C2'	C4A	3.394			
10'A"	x,y,-1+z	C2'	C5A	3.379	$\pi \dots \pi$ stacking	-2.5	A'A"
		C3'	C5A	3.306			
10'D''	x x 1 1 <i>a</i>	C7'	N2B	3.341	staaling	2.0	A! D''
10 D	x,y,-1+z	C3'	C6B	3.432	nn stacking	-3.0	AD
		N3'	C4A	3.183			
11'A"	1-x,-y,1-z	N4'	C4A	3.273	$\pi \dots \pi$ stacking	-5.0	A'A"
	, , ,	N4'	C5A	3.357			
11'R''	1 v v 1 z	C6'	N3B	3.266	staaking	7.2	A' B''
II D	1-x,-y,1-Z	C6'	N4B	3.283	nn stacking	-7.2	AD

Table 12S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A''(B'') of compound **4b** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry code	Atom	ic pair	Distance	Type of Interaction	Energy	Molecular pair
1"A"A"	1/2-x,-1/2+y,1.5-z	No	close co	ntacts	vdW	-4.5	A"A" 3546
1''A''B''	1/2-x,-1/2+y,1.5-z	02A 02A	C5B H5B	3.235 2.585	С-НО	-3.5	A"B"
1''B''A''	1/2-x,-1/2+y,1.5-z	N4B N4B	C7A H7A	3.356 2.428	C-HN	-4.3	B''A''
1''B''B''	1/2-x,-1/2+y,1.5-z	Cannot	exist, to	oo close N	4BC4B contact o	f 2.911Å	B''B''
2"A"A"	1/2-x,1/2+y,1.5-z	No	close co	ntacts	vdW	-4.5	A"A"
2''A''B''	1/2-x,1/2+y,1.5-z	H7A C7A	N4B N4B	2.428 3.356	C-HN	-4.3	A"B"
2''B''A''	1/2-x,1/2+y,1.5-z	C5B H5B	O2A O2A	3.235 2.585	С-НО	-3.5	B''A''
2''B''B''	1/2-x,1/2+y,1.5-z	Cannot	exist, to	oo close N	4BC4B contact of	f 2.911Å	B''B''
3"A"A"	-x,-y,1-z	No	close co	ntacts	vdW	-0.2	A"A"
3''A''B''	-x,-y,1-z	C2A H2A N4A N4A	01B 01B C7B H7B	3.435 2.490 3.277 2.409	C-HO C-HN	-5.2	A"B"
3''B''A''	-x,-y,1-z	01B 01B C7B H7B	C2A H2A N4A N4A	3.175 2.490 3.277 2.409	C-HO C-HN	-5.2	B"A"
3''B''B''	-x,-y,1-z	01B 01B 01B 01B 01B 07B 02B H2B H7B	C2B H2B C7B H7B O1B O1B O1B	3.373 2.434 3.230 2.329 3.230 3.373 2.434 2.329	С-НО	-9.7	В"В"
4"A"A"	1-x,-y,2-z	01A 01A C4A H4A	C4A H4A O1A O1A	3.310 2.546 3.310 2.546	С-НО	-3.8	A"A"
4''A''B''	1-x,-y,2-z	C4A H4A	N3B N3B	3.219 2.440	C-HN	-4.4	A"B"
4''B''A''	1-x,-y,2-z	N3B N3B	C4A H4A	3.219 2.440	C-HN	-4.4	B''A''
4''B''B''	1-x,-y,2-z	no	close co	ntacts	vdW	-3.4	B"B"
5"A"A"	-1/2+x,1/2-y,-1/2+z	N3A N3A	C5A H5A	3.246 2.373	C-HN	-2.0	A"A"
5"A"B"	-1/2+x,1/2-y,-1/2+z	no	close con	ntacts	vdW	-4.2	A"B"
5''B''A''	-1/2+x,1/2-y,-1/2+z	O2B O2B	C5A H5A	3.059 2.177	С-НО	-1.4	B"A"
5"B"B"	-1/2+x,1/2-y,-1/2+z	no	close con	ntacts	vdW	-3.3	B"B"

6"A"A"	1/2+x,1/2-y,1/2+z	C5A	N3A	3.246	C-HN	-2.0	A"A"
	•	HJA	N3A	2.373			
6''A''B''	1/2+x,1/2-y,1/2+z	C5A	O2B	3.059	С-НО	-1.4	A''B''
		H5A	O2B	2.177			
6''B''A''	1/2+x,1/2-y,1/2+z	no	close co	ntacts	vdW	-4.2	B''A''
6''B''B''	1/2+x,1/2-y,1/2+z	no	close co	ntacts	vdW	-3.3	B''B''
		N4A	C1	3.227			
7"A"(9)	x,y,z	C2A	C4	3.455	$\pi\pi$ stacking		A"A
		C7A	C6	3.365			
		C2B	C5	3.553			
7''B''(9)	x,y,z	N5B	C6	3.362	$\pi\pi$ stacking		B"A
		C3B	C6	3.534			
		N5A	N3	3.100			
Q" A "(10)	-x,-y,1-z	N2A	C2	3.262	staalsing	57	A.I. A
8 A (10)		N4A	N5	3.147	nn stacking	-3.7	AA
		C3A	N2	3.365			
	1 .	O1B	N5	3.031			
8"B"(10)		O1B	C3	3.226	π π stooking	-4.2	B'' A
о D (10)	-x,-y,1-2	N5B	02	3.025	nn stacking		DA
		C7B	N3	3.237			
9"A"(11)	1/2+x,1/2-y,1/2+z	no	close co	ntacts	vdW	-2.2	A"A
9''B''(11)	1/2+x,1/2-y,1/2+z	no	close con	ntacts	vdW	-0.3	B''A
		C4A	C2'	3.394			
10"A"(10')	x,y,1+z	C5A	C2'	3.379	$\pi \dots \pi$ stacking	-2.5	A"A'
		C5A	C3'	3.306			
1011011(101)		N2B	C7'	3.341	ata alain a	20	
10 B (10)	x,y,1+z	C6B	C3'	3.432	$\pi \dots \pi$ stacking	-3.8	БА
		C4A	N3'	3.183			
10"A"(11')	1-x,-y,1-z	C4A	N4'	3.273	$\pi\pi$ stacking	-5.0	A"A'
. ,	·	C5A	N4'	3.357	Ũ		
	1 1	N3B	C6'	3.266		= 2	D 11 4 1
10. B. (11.)	1-x,-y,1-z	N4B	C6'	3.283	$\pi \dots \pi$ stacking	-1.2	вА

Table 13S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **5a** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atom	ic pair	Distance	Type of interaction	Energy
		C1	C2	3.426		
		C1	C3	3.464	ππ.	
1	-1+x,y,z	C5	C4	3.429	stacking	-4.2
		C6	C4	3.467	PhPh	
		C6	C5	3.454		
		C2	C1	3.426		
		C3	C1	3.464	ππ.	
2	1+x,y,z	C4	C5	3.429	stacking	-4.2
		C4	C6	3.467	PhPh	
		C5	C6	3.454		
3	1/2-x,-y,-1/2+z	no	close con	tacts	vdW	-1.2
4	1/2-x,-y,1/2+z	no	close con	tacts	vdW	-1.2
5	1.5-x,-y,-1/2+z	no	close con	tacts	vdW	-1.5
6	1.5-x,-y,1/2+z	no	close con	tacts	vdW	-1.5
7	1-x,-1/2+y,1/2-z	no	close con	tacts	vdW	-3.5
8	1-x,1/2+y,1/2-z	no	close con	tacts	vdW	-3.5
		01	C5	3.196		
9	2-x,-1/2+y,1/2-z	01	H5	2.617	C-HO h-bond	-4.4
		C3	O2	3.505		
		H3	O2	2.504		
		O2	C3	3.505		
10	2-x,1/2+y,1/2-z	O2	H3	2.504	C-HO h-bond	-4.4
		C5	01	3.196		
		H5	01	2.617		
11	1/2 + x + 1/2 + x + 1 = 1	N1	C2	3.478	CH Nhhand	1.2
11	-1/2+x,-1/2-y,1-Z	N1	H2	2.570	C-IIIN II-DOIID	-1.2
10	1/2 1/2 1	C2	N1	3.478	CIL N h hand	1.2
12	1/2+x,-1/2-y,1-z	H2	N1	2.570	C-HN n-dond	-1.2
13	-1/2+x,1/2-y,1-z	no	close con	tacts	vdW	-0.8
14	1/2+x,1/2-y,1-z	no	close con	tacts	vdW	-0.8

Table 14S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A of compound **5b** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry code	Atomic	c pair	Distance	Type of interaction	Energy	Molecular pair
	-	C2	C1	3.381			
1	-1+x,y,z	C2	C6	3.492	$\pi \dots \pi$ stacking	-4.3	AA
		C3	C5	3.491	PhPh		
		C4	C5	3.382			
		C1	C2	3.381			
2	1+x,y,z	C5	C3	3.491	$\pi \dots \pi$ stacking	-4.3	AA
		C5	C4	3.382	PhPh		
		C6	C2	3.492			
		01	C2	3.473			
2	0 1	01	H2	2.589		4.5	
3	-x,2-y,1-z	C2	O1	3.473	C-HO n-bond	-4.5	AA
		H2	01	2.589			
4	1-x,2-y,1-z	no c	lose con	ntacts	vdW	-5.6	AA
5	1-x,3-y,1-z	no c	lose con	ntacts	vdW	-1.1	AA
6	2-x,3-y,1-z	no c	lose con	ntacts	vdW	-2.1	AA
7	1	O2	C5'	3.215	C.U. O.h.h., 1	2.1	A A I
/	-1+X,Y,Z	O2	H5'	2.521	C-HO n-bond	-2.1	AA
8	x,y,z	no c	lose con	ntacts	vdW	-1.6	AA'
9	x,1+y,z	no c	lose con	ntacts	vdW	-0.2	AA'
10	1	C5	N3'	3.494	CH Nhhail	0.2	A A 1
10	1+x,1+y,z	H5	N3'	2.655	C-HN n-bond	-0.3	AA
11	-x,2-y,1-z	no c	lose con	ntacts	vdW	-0.6	AA'
10	1 - 2	C5	01'	3.375	CIL Obbert	2.2	A A1
12	1-x,2-y,-z	H5	O1'	2.602	C-HO h-bond -		AA
13	1-x,2-y,1-z	N3	N3'	3.013	AzidAzid	-1.2	AA'

Table 15S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A' of compound **5b** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry code	Atomi	c pair	Distance	Type of interaction	Energy	Molecular pair
1	-1+x,y,z	C2' C6'	C3' C5'	3.371 3.379	$\pi \dots \pi$ stacking PhPh	-3.6	A'A'
2	1+x,y,z	C3'	C2'	3.371	$\pi \dots \pi$ stacking	-3.6	A'A'
		N1'	C2'	3.379	1 111 11		
		N1'	H2'	2 541			
3	-x,1-y,-z	C2'	N1'	3.435	C-HN h-bond	-5.0	A'A'
		H2'	N1'	2.541			
4	1-x,1-y,-z	no	close co	ontacts	vdW	-4.3	A'A'
5	1-x,2-y,-z	no	close co	ontacts	vdW	-3.0	A'A'
		O2'	C4'	3.354			
6	2-x,2-y,-z	O2'	H4'	2.618	C-HO h bond	-5.2	A'A'
		C4'	O2'	3.354			
		H4'	O2'	2.618			
7	1+x v z	C5'	O2	3.215	C-H Ohbond	-2.1	Δ' Δ
'	1+ <i>A</i> , <i>y</i> , <i>L</i>	H5'	O2	2.521	C 110 li 00lid	2.1	1111
8	x,y,z	no	close co	ontacts	vdW	-1.6	A'A
9	x,-1+y,z	no	close co	ontacts	vdW	-0.2	A'A
10	1 1	N3'	C5	3.494	CH Nh bond	0.3	Δ' Δ
10	-1+x,-1+y,Z	N3'	H5	2.655	C-11N II 00110	-0.5	AA
11	-x,2-y,1-z	no	close co	ontacts	vdW	-0.6	A'A
12	$1 \times 2 \times 7$	01'	C5	3.375	CH Obbord	33	Δ' Δ
12	1-x,2-y,-Z	01'	H5	2.602		-5.5	AA
13	1-x,2-y,1-z	N3'	N3	3.013	AzidAzid	-1.2	A'A

Table 16S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **5c** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry code	Atom	ic pair	Distance	Type of interaction	Energy
1	x,-1+y,z	no	close co	ontacts	vdW	-1.4
2	x,1+y,z	no	close co	ontacts	vdW	-1.4
		C1	03	3.321		
3	1-x, 1-y, -1/2+z	C2	03	3.174	Οπ	-2.9
		C3	03	3.336		
		O3	C1	3.321		
4	1-x,1-y,1/2+z	03	C2	3.174	Οπ	-2.9
		03	C3	3.336		
		N3	C2	3.347		
5	2-x,1-y,-1/2+z	N3	C3	3.256	Νπ	-0.6
		N3	C4	3.446		
		C2	N3	3.347		
6	2-x,1-y,1/2+z	C3	N3	3.256	Νπ	-0.6
		C4	N3	3.446		
		01	N3	3.189		
7	-1/2+x,1/2-y,z	O2	N2	2.981	Νπ	-4.6
		O2	N3	3.064		
		N2	O2	2.981		
8	1/2+x,1/2-y,z	N3	01	3.189	Νπ	-4.6
		N3	02	3.064		
0	1/2 + x + 1 = 5 = x = 7	O4	N1	3.041	Ο π	26
7	-1/2+x,1.J-y,2	O4	C1	3.218	0 <i>n</i>	-2.0
10	1/2 + x + 1 = 5 + x = 7	N1	04	3.041	0 7	26
10	1/2+x,1.3-y,2	C1	04	3.218	0 <i>n</i>	-2.0
		01	O4	3.062		
		O1	N5	2.931	0 -	
11	1.5-x,-1/2+y,-1/2+z	01	C5	3.245	O	-4.5
		C2	O4	3.279	С-п0 п-ропа	
		H2	O4	2.396		
		O4	01	3.062		
		N5	01	2.931	0 -	
12	1.5-x, 1/2+y, 1/2+z	C5	01	3.245	0π	-4.5
		O4	C2	3.279	C-HOn-bond	
		O4	H2	2.396		

Experimental determination of the enthalpy of formation.

For thermochemical experiments of each compound, several samples obtained and purified by different methods were used. The purity of the samples was at least 99.5% (HPLC).

The energies of combustion of several derivatives azasydnones 3a-d and tetrazoles 4a,b are measured by the method of a bombing calorimetry of burning and enthalpies of formation in a standard condition are calculated. Measurements are executed on a precision automatic calorimeter of burning with an isothermal cover (a design of laboratory of thermodynamics of high energetic systems ICP of the Russian Academy of Sciences), developed specially for

burning of energetic materials^[2]. The technique of preparation of samples and the burning experiment in the calorimetric bomb were described earlier.^[30].

For Tables S17-S19, following designations are accepted:

m - mass of samples, g;

 ΔT – the corrected temperature lifting for the calorimeter, conditional degree;

Q – the quantity of heat measured in an experience, cal;

 q_a – a thermal emission from combustion of auxiliary substance (reference benzoic acid), cal;

 q_i – the energy of an ignition measured by the special electronic device, cal;

q_N – the amendment on nitric acid formation, cal;

 q_{cot} – a thermal emission from combustion of a cotton thread, cal;

 $\Delta U'_{B}$ – energy of combustion of a sample in the conditions of the bomb, cal·g⁻¹;

 ΔH^{o}_{c} – a standard enthalpy of combustion of compound, kcal·mol⁻¹;

 ΔH^{o}_{f} – a standard enthalpy of formation of compound, kcal·mol⁻¹.

	3	-(4-Nitropheny	yl)-1,2,3,4-oxa	triazolium-5-	olate, C7	$H_4N_4O_4$ ((3a)				
		S	ample 1 (cryst	allized from	EtOH)						
Ν	m	ΔΤ	Q	q_{a}	q_i	q_N	q_{cot}	$-\Delta U'_B$			
1	0.048912	2.18383	1174.01	968.21	5.84	1.31	8.81	3881.3			
2	0.053236	2.23282	1200.34	977.59	5.83	1.45	8.67	3884.6			
	·	S	ample 2 (cryst	allized from	EtOH)						
1	0.053721	2.32958	1252.36	1026.55	5.93	1.17	9.95	3886.0			
2	0.053091	2.36572	1271.72	1051.33	5.83	1.17	7.31	3882.9			
	$-\Delta U'_{B} = 3884 \pm 4 \text{ cal} \cdot \text{g}^{-1}$										
	$3-(3-Nitrophenyl)-1,2,3,4-oxatriazolium-5-olate, C_7H_4N_4O_4$ (3b)										
		S	ample 1 (cryst	allized from	EtOH)						
Ν	m	ΔΤ	Q	q_{a}	q_i	q_N	q_{cot}	$-\Delta U'_B$			
1	0.076974	2.51442	1351.73	1036.21	5.85	1.77	7.64	3900.8			
2	0.077326	2.48683	1336.89	1019.92	5.86	1.77	8.16	3894.9			
3	0.084926	2.52626	1358.09	1010.62	5.80	1.95	8.79	3896.7			
						$-\Delta U'_B$	= 3898 ±	$= 6 \text{ cal} \cdot \text{g}^{-1}$			
		Sam	ple 2 (crystalli	zed from Et	OH:H ₂ O=	2:1)					
Ν	m	ΔΤ	Q	q_{a}	q_i	q_N	q_{cot}	$-\Delta U'_{B}$			
1	0.089036	2.33470	1255.11	891.67	5.80	2.04	8.68	3896.4			
2	0.091042	2.34283	1259.48	887.56	5.83	2.07	8.80	3901.7			
3	0.094015	2.34815	1262.34	879.20	5.80	2.14	8.72	3898.1			
4	0.091433	2.33139	1253.33	880.18	5.82	2.07	8.93	3901.0			
5	0.048169	2.05339	1103.88	900.19	5.82	1.10	8.95	3899.2			
						$-\Delta U'_B$	= 3899 ±	$= 3 \text{ cal} \cdot \text{g}^{-1}$			
	3-(3,5-Dinitrophe	enyl)-1,2,3,4-oz	xatriazolium-	5-olate, C	$C_7H_3N_5O$	$\theta_{6}(3c)$				
			(crystallize	ed from EtOI	H)		-				
Ν	m	ΔT	Q	q_a	q_i	q_N	q _{cot}	$-\Delta U'_B$			
1	0.076312	2.21883	1192.82	942.25	5.90	1.61	9.19	3064.7			
2	0.080237	2.20748	1186.72	925.07	5.83	1.73	8.49	3060.9			

Table 17S. Energies of combustion of azasydnones 3a-d and tetrazoles 4a,b

3	0.075279	2.18780	1176.14	930.25	5,78	1.59	8.01	3062.1			
4	0.082698	2.22419	1195.70	926.50	5.86	1.79	8.39	3061.3			
5	0.078317	2.19121	1172.97	921.92	5.85	1.68	8.60	3063.4			
						$-\Delta U'_B$	$= 3063 \pm$	$2 \text{ cal} \cdot \text{g}^{-1}$			
	$3-(2,4-Dinitrophenyl)-1,2,3,4-oxatriazolium-5-olate, C_7H_3N_5O_6$ (3d)										
	(crystallized from hexane– CH_2Cl_2 , 1:1)										
Ν	m	ΔT	Q	q _a	q_i	q_N	q_{cot}	$-\Delta U'_B$			
1	0.081214	2.26877	1219.67	953.66	5.93	2.07	8.40	3074.2			
2	0.042939	2.05074	1102.46	954.94	5.92	1.04	8.31	3079.9			
3	0.035802	2.02881	1096.67	965.56	5.90	0.76	8.28	3077.2			
4	0.075211	2.05039	1102.30	854.93	5.91	1.45	8.62	3076.1			
5	0.096089	2.17839	1171.08	859.28	5.95	1.86	8.48	3075.4			
6	0.073948	2.03766	1095.43	851.57	5.94	1.38	8.81	3079.6			
						$-\Delta U'_B$	$= 3077 \pm$	$2 \operatorname{cal} \cdot \operatorname{g}^{-1}$			
		1-(4-	Nitrophenyl)-1	<i>H</i> -1,2,3,4-te	etrazole (4	a)					
	Sample 1 (crystallized from EtOH)										
Ν	m	ΔT	Q	\mathbf{q}_{a}	q_i	q_N	q _{cot}	$-\Delta U'_{B}$			
1	0.080963	2.35944	1268.41	865.96	5.87	2.00	9.43	4757.1			
2	0.081216	2.36388	1270.80	867.75	5.94	2.04	9.06	4752.9			
3	0.080593	2.36597	1271.92	872.60	5.91	2.00	8.56	4750.4			
		S	ample 2 (crysta	allized from	CH ₃ CN)	-					
Ν	m	ΔT	Q	q _a	q_i	q_N	q_{cot}	$-\Delta U'_B$			
1	0.088743	2.51163	1350.23	911.44	5.97	2.35	9.20	4747.1			
2	0.083911	2.41827	1300.04	884.01	5.94	2.21	9.20	4751.2			
3	0.081318	2.40003	1290.23	886.83	5.91	2.14	8.71	4754.8			
						$\Delta U'_B = 4'$	752.1 ± 3	$.5 \text{ cal} \cdot \text{g}^{-1}$			
		1-(3-	Nitrophenyl)-1	<i>H</i> -1,2,3,4-te	etrazole (4	b)					
			Sample 1 (cryst	allized from	n EtOH)		-	1			
Ν	m	ΔΤ	Q	q _a	q_i	$q_{\rm N}$	q_{cot}	$-\Delta U'_{B}$			
1	0.086263	2.44969	1316.93	890.35	5.91	2.22	7.99	4758.2			
2	0.084352	2.43730	1310.27	893.22	5.93	2.18	8.15	4751.4			
3	0.088047	2.49242	1339.90	905.19	5.92	2.28	7.89	4754.5			
		Sample	2 (crystallized	l from CH ₃ C	$CN:H_2O =$	1:3)	1	1			
Ν	m	ΔΤ	Q	q _a	q_i	q_N	q _{cot}	$-\Delta U'_B$			
1	0.083368	2.54401	1367.63	953.22	5.92	2.35	9.57	4756.9			
2	0.084071	2.45964	1322.28	905.52	5.89	2.37	8.88	4753.4			
3	0.087142	2.48158	1334.07	902.34	5.84	2.46	8.70	4759.2			
					-/	$\Delta U'_B = 4'$	755.6 ± 3	$0.0 \text{ cal} \cdot \text{g}^{-1}$			

The measured energies of combustion compounds **3a-b** and **3c-d** and **4a-b** proceed according to following of reaction (equations 1, 2 and 3, respectively):

$$C_7H_4N_4O_{4(cr)} + 6O_{2(g)} \rightarrow 7CO_{2(g)} + 2H_2O_{(l)} + 2N_{2(g)}$$
 (1),

$$C_7H_3N_5O_{6(cr)} + 4.75O_{2(g)} \rightarrow 7CO_{2(g)} + 1.5H_2O_{(l)} + 2.5N_{2(g)}$$
(2),

$$C_7H_5N_5O_{2(cr)} + 7.25O_{2(g)} \rightarrow 7CO_{2(g)} + 2.5H_2O_{(l)} + 2.5N_{2(g)}$$
(3)

where cr, g and l correspond to crystalline, gaseous and liquid conditions respectively. Enthalpies of formation for compounds of this study are calculated from enthalpies of combustion according to equations 4-6.

$$\Delta H^{o}_{f}[C_{7}H_{4}N_{4}O_{4}]_{(cr)} = 7\Delta H^{o}_{f}[CO_{2}]_{(g)} + 2\Delta H^{o}_{f}[H_{2}O]_{(l)} - \Delta H^{o}_{c}$$
(4)

$$\Delta H^{o}_{f}[C_{7}H_{3}N_{5}O_{6}]_{(cr)} = 7\Delta H[CO_{2}]_{(g)} + 1.5\Delta H^{o}_{f}[H_{2}O]_{(l)} - \Delta H^{o}_{c}$$
(5),

$$\Delta H^{o}_{f}[C_{7}H_{5}N_{5}O_{2}]_{(cr)} = 7\Delta H^{o}_{f}[CO_{2}]_{(g)} + 2.5\Delta H^{o}_{f}[H_{2}O]_{(l)} - \Delta H^{o}_{c}$$
(6)

where ΔH_c^{o} – the standard enthalpy of combustion. The enthalpy of formation for the combustion products,^[31] i.e., $\Delta H_f^{o}[CO_2]_{(g)} = -94.051 \pm 0.031 \text{ kcal mol}^{-1}$, $\Delta H_f^{o}[H_2O]_{(l)} = -68.315 \pm 0.009 \text{ kcal mol}^{-1}$. The results are presented in Table 18S.

Compound $-\Delta H^{o}_{c}$ ΔH^{o}_{f} $-\Delta U'_{B}$ <u>kcal</u>·mol⁻¹ <u>kcal</u>·mol⁻¹ $cal \cdot g^{-1}$ 3-(4-Nitrophenyl)-1,2,3,4-oxatriazolium-5- 3884 ± 4 805.6 ± 0.6 10.6 ± 0.6 olate, $C_7H_4N_4O_4$ (3a) 3-(3-Nitrophenyl)-1,2,3,4-oxatriazolium-5- 3899 ± 2 808.8 ± 0.4 13.8 ± 0.4 olate, $C_7H_4N_4O_4$ (3b) 3-(3,5-Dinitrophenyl)-1,2,3,4-oxatriazolium-5- 3063 ± 2 771.0 ± 0.5 10.5 ± 0.5 olate, $C_7H_3N_5O_6$ (3c) 3-(2,4-dinitrophenyl)-1,2,3,4-oxatriazolium-5- 3077 ± 3 775.5 ± 0.8 14.7 ± 0.8 olate, $C_7H_3N_5O_6$ (3d) 1-(4-nitrophenyl)-1H-1,2,3,4-tetrazole, 4752 ± 4 906.1 ± 0.7 76.9 ± 0.7 $C_7H_5N_5O_2$ (4a) 1-(3-nitrophenyl)-1H-1,2,3,4-tetrazole, 4756 ± 3 906.8 ± 0.6 77.6 ± 0.6 $C_7H_5N_5O_2$ (4b)

Table 18S. Thermochemical characteristics of azasydnones 3a-d and tetrazoles 4a,b

Details of the gas-phase enthalpy of formation evaluation

Several methods are developed for assessment of the gas phase enthalpy of formation (ΔH_f^{0}) , namely Gaussian-*n*, CBS (complete basis set) and W-n.^[18a] Here the G3B3 approximation^[18b] was used, since G4 underestimates the ΔH_f^{0} for nitro compounds by ~ 10 kJ/mol on the average.^[19a] The literature ($\Delta H^{298} - \Delta H^{0}$) values for elements in their standard states^[19b] were used.^[20] The total energy (E₀) and thermodynamic parameters, including zero

point energy (ZPE) and ΔH_f^0 , obtained for the structures optimized at the B3LYP/6-31G** level, are given in Table 19S.

Ja u, Ha-D and Ja C			
Compond	E ₀ (a.u.)	$\Delta H_{f calc}^{0}$ (kcal/mol)	$\Delta H_{\rm f}^{0}$ calc (kJ/mol)
3a	-788.442840	+30.4	+127.19
3b	-788.442168	+30.8	+128.87
3c	-992.855909	+29.00	+121.34
3d	-992.846064	+35.2	+147.28
4a	-600.004290	+86.75	+362.96
4b	-600.003140	+87.47	+365.97
5a	-693.412443	+96.49	+403.71
5b	-693.411215	+97.26	+406.94
5c	-804.420422	+83.40	+348.95

Table 19S. Calculated total energy (E₀) and enthalpy of formation ($\Delta H_{f calc}^{0}$) of compounds **3a-d**, **4a-b** and **5a-c**

Detonation performance of azasydnones. Table 20S lists the results of thermodynamic calculations using Smirnov^[5] and Kamlet-Jacobs^[6] empirical method. The necessary for computations values for structurally similar compounds were taken from literature, viz., NB,^[32] 1,3-DNB, 1,4- DNB, TNB.^[33]

Table 20S. Calculation of detonation performance for azasydnones and related compounds: input data and results.

Code	Formula	$\rho_{\mathbf{x}-\mathbf{ray}}^{298\mathrm{K}}$,	$\Delta H_{ m f}^{0}$,	$D,^{[c]}$	$P_{\rm CJ},^{[c]}$	$D,^{[d]}$	$P_{\rm CJ},^{[\rm d]}$	$Q,^{[d]}$
Coue	1 onnuna	g/cm ³	kJ/mol	km/s	ГПа	km/s	ГПа	cal/g
3a	$C_7H_4N_4O_4$	$1.65^{[a]}$	57.7	6.44	17.4	6.76	22.1	827
3b	$C_7H_4N_4O_4$	$1.66^{[a]}$	44.4	6.44	17.5	6.77	22.1	816
3c	$C_7H_3N_5O_6$	$1.78^{[a]}$	43.9	7.36	23.9	7.50	27.2	997
3d	$C_7H_3N_5O_6$	1.72 ^[a]	61.5	7.21	22.4	7.36	25.7	1000
4 a	$C_7H_5N_5O_2$	1.55 ^[a]	321.0	5.89	14.0	6.49	20.5	821
4 b	$C_7H_5N_5O_2$	1.54 ^[a]	325.1	5.87	13.9	6.47	20.3	825
5a	$C_6H_4N_4O_2$	1.52 ^[a]	298.5 ^[b]	5.97	14.2	6.56	20.5	900
5b	$C_6H_4N_4O_2$	1.53 ^[a]	304.9 ^[b]	6.01	14.5	6.61	20.9	909
5c	$C_6H_3N_5O_4$	1.69 ^[a]	282 ^[b]	7.13	21.7	7.42	26.6	1046
NB	$C_6H_5NO_2$	1.20	12.5	4.45	6.7	4.88	10.4	641
1,3-DNB	$C_6H_4N_2O_4$	1.58	-27.2	6.40	16.7	6.52	20.3	900
1,4-DNB	$C_6H_4N_2O_4$	1.63	-38.5	6.51	17.7	6.63	21.4	897
1,3,5-TNB	$C_6H_3N_3O_6$	1.69	-37.2	7.32	22.9	7.28	24.9	1091
TNT	$\overline{C_7H_5N_3O_6}$	1.65	-62.8	7.00	20.6	7.02	23.3	1011

^[a] Calculated by equipment: $^{[21a,21e,34]}$ $\rho_{x-ray}^{298K} = \rho_{x-ray}^{100K} - 0.034 \times \rho_{x-ray}^{100K}$. ^[b] Calculated by G3B3. ^[c] Calculated by Kamlet's method. ^[d] Calculated by Smirnov's method.

Thermal stability for compounds of this study. For 1-(4-nitrophenyl)-1*H*-1,2,3,4-tetrazole (4a), literature melting points are in range of $191^{[35]}$ -200 °C.^[9] However, our results

clearly show that this temperature corresponds to thermal decomposition rather than melting (Figure 5b). Contrary, 1-(3-nitrophenyl)-1*H*-1,2,3,4-tetrazole (**4b**) first melts (according to literature m. p. is 108–109 °C,^[14] present study value 108 °C) and decomposes at 171°C. Note, that although the heat effect for **4a** and **4b** is essentially the similar (1360 and 1240 J g⁻¹, respectively), the rate of heat release is notably different.

p-Nitroazidobenzene (**5a**) melts at 70 °C (literature: 70,^[11] 69.5–71^[36] °C) with subsequent decomposition masked by significant evaporation. Under elevated pressure the decomposition onset of 164 °C was clearly observed. *m*-Nitroazidobenzene (**5b**) has a melting point of 52 °C (literature: m.p. 44–47,^[12] 52,^[37] 58–59^[38] °C) with further decomposition at 165 °C registered under normal pressure. 3,5-Dinitroazidobenzene (**5c**) melts at 83 °C close to the literature values 80,^[39] 85–86^[40] °C and then decomposes (extrapolated onset is 175 °C) with 50% of mass loss.

3c 2018-06-18 15:34 User: a

3f 2018-06-18 15:37 User: a

3-NPT 2018-06-18 15:20 User: a

4-NPA 2018-06-18 15:23 User: a

REFERENCES

- 1. V. I. Pepekin, Y. N. Matyushin and T. V. Gubina, Russ. J. Phys. Chem. B, 2011, 5, 97-100.
- 2. Y. O. Inozemtsev, A. B. Vorob'ev, A. V. Inozemtcev and Yu. N. Matyushin, Calorimetry of energetic materials. *Combustion and Explosion [Goren. Vzryv]*, 2014, **7**, 260–270.
- 3. STANAG 4489, Explosives, Impact Sensitivity Tests, NATO, Brussels, 1999.
- 4. STANAG 4487, Explosives, Friction Sensitivity Tests, NATO, Brussels, 2002.
- 5. C. L. Mader, *Numerical modeling of explosives and propellants*, CRC Press, Boca Raton, 3rd ed., 2008.
- 6. M. J. Kamlet and S. J. Jacobs, J. Chem. Phys., 1968, 48, 23-35.
- 7. N. V. Muravyev, K. A. Monogarov, A. A. Bragin, I. V. Fomenkov and A. N. Pivkina, *Thermochim. Acta*, 2016, **631**, 1–7.
- 8. A. Kh. Shakhnes, S. S. Vorob'ev and S. A. Shevelev, *Russ. Chem. Bull., Int. Ed.*, **2006**, *55*, № 5, 938-939.

- 9. M. Esmaeilpour, J. Javidi and S. Zahmatkesh, Appl. Organomet. Chem., 2016, 30, 897–904.
- 10. K. Nishiyama, M. Oba and A. Watanabe, *Tetrahedron*, 1987, **43**, 693–700.
- 11. T. Y. Liang and G. B. Schuster, J. Am. Chem. Soc., 1987, 109, 7803–7810.
- 12. J. T. B. Kueh, K. W. Choi and M. A. Brimble, Org. Biomol. Chem., 2012, 10, 5993.
- 13. A. I. Dynchenko, L. S. Pupko and P. S. Pelkis, *Zh. Org. Khim.*, 1974, **10**, 2229.
- 14. S. A. Shevelev, I. L. Dalinger, V. I. Gulevskaya, T. I. Cherkasova, V. M. Vinogradov, B. I. Ugrak and A. M. Starosotnikov, *Chem. Heterocycl. Comp.*, **1999**, 35, 363-373.
- 15. M. N. Martynova, M. S. Pevzner, N. A. Smorygo and N. M. Serebryakova, *Chem. Heterocycl. Compd.*, 1981, **17**, 1238–1240.
- 16. *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.
- 17. G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112-122.
- (a) Quantum-chemistry prediction of thermochemical data, J. Cioslowsky (Ed.), New-York: Kluwer, 2001; (b) L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov and J. A. Pople, J. Chem. Phys. 1998, 109, 7764-7776.
- (a) O. V. Dorofeeva, I. N. Kolesnikova, I. I. Marochkin, O. N. Ryzhova, *Struct. Chem.*, 2011, **22**, 1303–1314. (b) L. A. Curtiss, K. Raghavachari, P. C. Redfern and J. A. Pople, *J. Chem. Phys.* 1997, **106**, 1063-1079
- 20. <u>http://www.chem.msu.su/rus/handbook/ivtan/welcome.html</u>
- (a) I. L. Dalinger, A. Kh. Shakhnes, K. A. Monogarov, K. Yu. Suponitsky, A. B. Sheremetev, *Mendeleev Commun.*, 2015, 25, 429; (b) A. B. Sheremetev, B. V. Lyalin, A. M. Kozeev, N. V. Palysaeva, M. I. Struchkova, K. Yu. Suponitsky, *RSC Adv.*, 2015, 5, 37617; (c) A. O. Dmitrienko, V. A. Karnoukhova, A. A. Potemkin, M. I. Struchkova, I. A. Kryazhevskikh, K. Yu. Suponitsky, *Chem. Heterocycl. Compounds*, 2017, 53, 532; (d) I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, A. V. Kormanov, M. I. Struchkova, K. Yu. Suponitsky, A. A. Bragin, K. A. Monogarov, V. P. Sinditskii, A. B. Sheremetev, *Chem. Asian J.*, 2015, 10, 1987-1996.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Kudin, K. N., Jr.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision E.01*, Gaussian, Inc.: Wallingford, 2004.
- 23. Bader, R. F. W. Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.
- 24. Keith, T. A. **2014**, *AIMAll, Version 14.11.23*. TK Gristmill Software, Overland Park KS, USA (http://aim.tkgristmill.com)
- 25. A. B. Sheremetev, N. S. Aleksandrova, N. V. Palysaeva, M. I. Struchkova, V. A. Tartakovsky, K. Yu. Suponitsky, *Chem. Eur. J.*, 2013, **19**, 12446.
- 26. R.S. Rowland, R. Taylor, J. Phys. Chem. 1996, 100, 7384-7391.
- (a) I. L. Dalinger, A. V. Kormanov, K. Yu. Suponitsky, N. V. Muravyev, A. B. Sheremetev, *Chem. Asian J.*, **2018**, *13*, 1165-1172. (b) A. E. Frumkin, N. V. Yudin, K. Yu. Suponitsky, A. B. Sheremetev, *Mendeleev Commun.*, 2018, **28**, 135-137; (c) I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, A. B. Sheremetev, *J. Mater. Chem. A*, 2018, **6**, ASAP Article, DOI: 10.1039/C8TA05179H.

- 28. N. Yilmaz, S. Oz, A. Atakol, I. Svoboda, B. Aydiner, M. A. Akay, O. Atakol, *J. Thermal Analysis and Calorimetry*, **2015**, *119*, 2321.
- 29. A. Mugnoli, C. Mariani, M. Simonetta, Acta Crystallogr., 1965, 19, 367.
- 30. T. S. Kon'kova, Yu. N. Matyushin, E. A. Miroshnichenko, A. B. Vorob'ev. *Russ. Chem. Bull.* 2009, **58**, 1-8.
- 31. J. D. Cox, D. D. Wagman and V. A. Medvedev, Eds., *CODATA key values for thermodynamics*, Hemisphere Pub. Corp., New York, 1989.
- 32. S. P. Verevkin, V. N. Emel'yanenko, V. Diky and O. V. Dorofeeva, J. Chem. Thermodyn., 2014, 73, 163–170.
- 33. M. A. Suntsova and O. V. Dorofeeva, J. Chem. Eng. Data, 2016, 61, 313–329.
- 34. (a) Vatsadze, I. A.; Serushkina, O. V.; Dutov, M. D.; Shkineva, T. K.; Suponitsky, K. Yu.; Ugrak, B. I.; Dalinger, I. L. *Chem. Heterocycl. Compd.* 2015, 51, 695-703; (b) Sheremetev, A. B.; Aleksandrova, N. S.; Suponitsky, K. Y.; Antipin, M. Y.; Tartakovsky, V. A. *Mendeleev Commun.* 2010, 20, 249.
- 35. M. A. Karimi Zarchi and F. Nazem, J. Iran. Chem. Soc., 2014, 11, 91–99.
- 36. J. E. Leffler and R. D. Temple, J. Am. Chem. Soc., 1967, 89, 5235–5246.
- 37. K. Kutonova, M. Trusova, P. Postnikov, V. Filimonov and J. Parello, *Synthesis*, 2013, **45**, 2706–2710.
- 38. A. R. Hajipour and F. Mohammadsaleh, *Tetrahedron Lett.*, 2014, 55, 6799–6802.
- 39. T. Severin, R. Schmitz, J. Loske and J. Hufnagel, *Chem. Ber.*, 1969, **102**, 4152–4156.
- 40. P. A. Grieco and J. P. Mason, J. Chem. Eng. Data, 1967, 12, 623–624.