## Supporting Information for

## Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for

## formic acid oxidation

Hongjing Wang, Yinghao Li, Chunjie Li, Ziqiang Wang, You Xu, Xiaonian Li,

Hairong Xue\*, Liang Wang\*

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of

Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R.

China

\*Corresponding authors:

E-mails: xuehairong@zjut.edu.cn; wangliang@zjut.edu.cn



Fig. S1 XRD pattern of the PdRu NSAs.



**Fig. S2** SEM images of the samples prepared with different amounts of KBr under the typical synthesis: (a) 0 mg, (b) 10 mg.



**Fig. S3** SEM images of the samples prepared by replacing KBr with (a) KCl and (b) KI, respectively, under the typical synthesis.



Fig. S4 SEM image of Pd nanoparticles (Pd NPs) prepared without RuCl<sub>3</sub> under the typical synthesis.



**Fig. S5** SEM images of the samples prepared with the different molar ratio of the Pd/Ru precursors under the typical synthesis. The added metallic precursor amounts of  $Na_2PdCl_4$  and  $RuCl_3$  are (a) 2.25 mL and 0.75 mL, (b) 1.5 mL and 1.5 mL, (c) 0.4 mL and 2.6 mL, and (d) 0.2 mL and 2.8 mL respectively.



**Fig. S6** SEM images of the samples prepared with different amounts of HCl under the typical synthesis: (a) 0 mL, (b) 0.05 mL, (c) 0.1 mL, (d) 0.2 mL.



**Fig. S7** SEM images of the samples prepared (a) without F127 and (b) with PVP, respectively, under the typical synthesis.



Fig. S8 CV curves of the catalysts in 0.5 M  $\rm H_2SO_4$  solution.

| Catalyst                                | Condition                                             | Mass activity<br>(mA mg <sup>-1</sup> ) | Ref.            |
|-----------------------------------------|-------------------------------------------------------|-----------------------------------------|-----------------|
| PdRu NSAs                               | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 1105.8                                  | Current<br>work |
| Mesoporous Pd<br>Films                  | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 934.6                                   | 1               |
| Porous Pd<br>Nanosheets                 | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 409.3                                   | 2               |
| Pd arrow- headed<br>tripods             | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 493.0                                   | 3               |
| Mesoporous Pd<br>nanoparticles          | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 735.6                                   | 4               |
| 3D super-branched<br>PdCu               | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 808.0                                   | 5               |
| PdNi hollow<br>nanocrystals             | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 768.0                                   | 6               |
| Bi-modified<br>palladium<br>nanotubes   | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>М НСООН | 397.0                                   | 7               |
| Pd-Ag alloy<br>hollow<br>nanostructures | 0.1 M HClO <sub>4</sub> + 0.1<br>M HCOOH              | 602.8                                   | 8               |
| CuPd@Pd<br>tetrahedra                   | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 501.8                                   | 9               |
| Pd nanosheets                           | 0.1 M HClO <sub>4</sub> + 0.2<br>M HCOOH              | 634.3                                   | 10              |
| PtAgCu@PtCu                             | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 314.0                                   | 11              |
| Porous PtAg@Pt                          | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5<br>M HCOOH | 282.6                                   | 12              |

 Table S1. The comparisons of the FOR performance of the catalysts.

## Reference

- [1] C. Li, B. Jiang, N. Miyamoto, J. H. Kim, V. Malgras and Y. Yamauchi, *J. Am. Chem. Soc.*, 2015, 137, 11558-11561.
- [2] X. Qiu, H. Zhang, P. Wu, F. Zhang, S. Wei, D. Sun, L. Xu and Y. Tang, Adv. Funct. Mater., 2017, 27, 1603852.
- [3] N. Su, X. Chen, Y. Ren, B. Yue, H. Wang, W. Cai and H. He, Chem. Commun., 2015, 51, 7195-7198.
- [4] C. Li, T. Sato and Y. Yamauchi, Chem. Commun., 2014, 50, 11753-11756.
- [5] M. Iqbal, C. Li, J. H. Kim, S. M. Alshehri, T. Nakayama and Y. Yamauchi, Chem. Eur. J., 2016, 22, 17.
- [6] Z. Chen, J. Zhang, Y. Zhang, Y. Liu, X. Han, C. Zhong, W. Hu and Y. Deng, Nano Energy, 2017, 42, 353-362.
- [7] R. W. Atkinson, S. St. John, O. Dyck, K. A. Unocic, R. R. Unocic, C. S. Burke, J. W. Cisco, C. A. Rice, T. A. Zawodzinski and A. B. Papandrew, ACS Catal., 2015, 5, 5154-5163.
- [8] D. Liu, M. Xie, C. Wang, L. Liao, L. Qiu, J. Ma, H. Huang, R. Long, J. Jiang and Y. Xiong, *Nano Res.*, 2016, 9, 1590-1599.
- [9] Y. Chen, Y. Yang, G. Fu, L. Xu, D. Sun, J. M. Lee and Y. Tang, *J. Mater. Chem. A*, 2018, 6, 10632-10638.
- [10] Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang and X. Huang, Nano Lett., 2015, 15, 7519-7525.
- [11] G. Fu, B. Xia, R. Ma, Y. Chen, Y. Tang and J.-M. Lee, Nano Energy, 2015, 12, 824-832.
- [12] X. Jiang, X. Yan, W. Ren, Y. Jia, J. Chen, D. Sun, L. Xu and Y. Tang, ACS Appl. Mater. Inter., 2016, 8, 31076-31082.