Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Remarkable Enhancement of the Electrochemical Properties of Co₃O₄ Nanowire

Array by In Situ Surface Derivation of an Amorphous Phosphate Shell Wenhui Li,¹ Mingyue Chen,¹ Wenhao Ma, Pengcheng Qi, Wanjun Yang, Shiyu Wang, Yu Lu and Yiwen Tang*

Institute of Nano-Science & Technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China *Corresponding author: Tel.: +86-27-67867947; Fax: +86-27-67861185; E-mail: ywtang@mail.ccnu.edu.cn

¹These authors contributed equally to this work

Fig S1. (a-b) Low and high magnification TEM images of Co₃O₄@Co-Pi, (c) EDS spectrum of Co₃O₄@Co-Pi.

Fig S2. (a) XPS spectra of Co 2p for Co_3O_4 . (b) FT-IR spectra of Co_3O_4 and $Co_3O_4@Co-Pi$.

Fig S3. Illustration of the proposed morphology evolution mechanism of Co₃O₄@Co-

Pi.

Fig S4. N_2 adsorption-desorption isotherms with the corresponding pore size distribution (a) and (b): Co_3O_4 ; (c) and (d): Co_3O_4 @Co-Pi.

Fig S5. (a) XRD patterns of $Co_3O_4@Co_2P_4O_{12}$ -400, $Co_3O_4@Co_2P_4O_{12}$ -500, and $Co_3O_4@Co_2P_4O_{12}$ -600 powders removed from the nickel foam. (b-d) SEM images of $Co_3O_4@Co_2P_4O_{12}$ -400, $Co_3O_4@Co_2P_4O_{12}$ -500 and $Co_3O_4@Co_2P_4O_{12}$ -600.

Fig S6. (a) CV curves of $Co_3O_4@Co_2P_4O_{12}$ electrode with different annealing temperature at 10 mV s⁻¹. (b-c) TEM image, HRTEM image $Co_3O_4@Co_2P_4O_{12}$ -500. (d) Elemental mapping images of $Co_3O_4@Co_2P_4O_{12}$ -500.

Fig S7. (a) Specific capacitance versus various current densities of Co_3O_4 , Co_3O_4 @Co-Pi, and Co_3O_4 @Co_P4O_12. (b) CV curves of Co_3O_4 @Co-Pi electrode collected at different scan rate. (c) GCD curves of Co_3O_4 @Co-Pi electrode collected at different current density. (d) The voltage drop of three materials at a current density of 10 A g⁻¹.

Fig S8. Schematic illustration of the phosphating process with different temperature and time for fabricating core-shell Co₃O₄@Co-Pi nanowires array.

Fig S9. SEM images of Co_3O_4 @Co-Pi with different phosphating time for 250 °C, (a) 1 h, (b) 2 h, (c) 3 h. (d) XRD patterns of Co_3O_4 @Co-Pi prepared under 200 and 300°C, respectively, for 2 h.

Fig S10. SEM images of Co_3O_4 @Co-Pi with different phosphating temperature for 2 h: (a) 200°C; (b) 250°C; (c) 300°C. (d) XRD patterns of Co_3O_4 @Co-Pi prepared under 200 and 300°C, respectively, for 2 h.

Fig S11. Electrochemical characterization of Co₃O₄@Co-Pi: (a) CV curves of different phosphating time; (b) GCD plots; (c) CV curves of different phosphating temperature; (d) GCD plots.

Fig S12. (a) CV curves of activated carbon. (b) CV curves at 50 mV/s of $Co_3O_4@Co-$

Pi//AC supercapacitor.

Type of electrode	Specific (areal)	Rate	Capacitance retention	Ref.
	capacitance	capability		
Co ₃ O ₄ @Co-Pi core-	$1692 \text{ F g}^{-1} \text{ at}$	56.1% from 1	86% after 6,000 cycles	This
shell hybrid	of 1 A g ⁻¹	to		work
nanostructure		10 A g^{-1}		
RuO ₂ /Co ₃ O ₄ nanosheets	905 F g ⁻¹ at 1 A	78% from 1 to	96% after 5,000 cycles	[1]
	g ⁻¹	40 A g^{-1}		
layered Co ₃ O ₄	265 F g ⁻¹ at 1 A	64.6% from 1	89.6% after 1,000	[2]
	g-1	to 6 A g^{-1}	cycles	
Co ₃ O ₄ nanowires	746 F g ⁻¹ at 0.6	No data	86% after 500 cycles	[3]
	A g ⁻¹			
α -Co(OH) ₂ /Co ₃ O ₄	583 F g ⁻¹ at 1 A	No data	No obvious specific	[4]
nanorods	g ⁻¹		capacitance loss after	
			2000 cycles	
Co ₃ O ₄ @MnO ₂	560 F g ⁻¹ at 0.2	54.5% from	No negligible	[5]
	A g ⁻¹	0.2 to 10 A g^{-1}		
Co ₃ O ₄ nanoparticles	370 F g ⁻¹ at 0.5	No data	No negligible	[6]
	A g ⁻¹			
plate-like Co ₃ O ₄	393.6 F g ⁻¹ at	No data	96.5% after 500 cycles	[7]
	1 A g ⁻¹			
ultralayered Co ₃ O ₄	548 F g ⁻¹ at	59.4% from 4	98.5% after 2000 cycles	[8]
	4 A g ⁻¹	to 32 A g^{-1}		
Hollow Co ₃ O ₄ nanowire	599 F g ⁻¹ at	73.3% from 2	No negligible	[9]
arrays	2 A g ⁻¹	to 40 A g^{-1}		
Co ₃ O ₄ /GO	157.7 F g ⁻¹ at	51.8% from	70% after 4000 cycles	[10]
	0.1 A g ⁻¹	0.1 to 2 A g^{-1}		
flower-like NiO-Co ₃ O ₄	1190 F g ⁻¹ at	No data	99% after 5000 cycles	[11]
	4 A g ⁻¹			
PCO NWAs	1716 F g ⁻¹ at 5	No negligible	85% after 1,0000 cycles	[12]
	$mV s^{-1}$			

Table S1. Electrochemical performance obtained from Co₃O₄ based electrodes.

References:

- [1] Rakhi, R.B., Chen, W.; Hedhili, M. N.; Cha, D.; Alshareef, H. N., ACS Appl.
 Mater. Interface 2014, 6, 4196.
- [2] Xie, L., Li, K.; Sun, G.; Hu, Z.; Lv, C.; Wang, J.; Zhang, C., J. Solid State Electr.

2013, *17*, 55.

- [3] Gao, Y., Chen, S.; Cao, D.; Wang, G.; Yin, J., J. Power Sources 2010, 195, 1757.
- [4] Jing, M., Yang, Y.; Zhu, Y.; Hou, H.; Wu, Z.; Ji, X., *Electrochim. Acta* 2014, 141, 234.
- [5] Huang, M., Zhang, Y.; Li, F.; Zhang, L.; Wen, Z.; Liu, Q., J. Power Sources
 2014, 252, 98.
- [6] Xia, X.-h.; Tu, J.-p.; Zhang, Y.-q.; Mai, Y.-j.; Wang, X.-l.; Gu, C.-d.; Zhao, X.-b., *Rsc Adv.* 2012, *2*, 1835.
- [7] Aghazadeh, M., J. Appl. Electrochem. 2012, 42, 89.
- [8] Meher, S. K.; Rao, G. R., J. Phys. Chem. C 2011, 115, 15646.
- [9] Xia, X.-h.; Tu, J.-p.; Mai, Y.-j.; Wang, X.-l.; Gu, C.-d.; Zhao, X.-b., J. Mater. Chem. 2011, 21, 9319.
- [10] Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, F. Nie, ACS Appl. Mater. Interface 2014, 6, 7626.
- [11] Xu, K.; Zou, R.; Li, W.; Xue, Y.; Song, G.; Liu, Q.; Liu, X.; Hu, J., J. Mater. Chem. A 2013, 1, 9107.
- [12] Zhai, T.; Wan, L.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q.; Xia, H., Adv. Mater. 2017, 29.