Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information (ESI)									
Supporting	Information	for	this	work	is	available	free	of	charge

Cross-sectional scanning electron micrographs and polarized optical micrographs of the studied freestanding liquid crystal network, polyamide 6, poly(ethylene terephthalate) films and bilayers.

Figure S1. A cross-sectional scanning electron micrograph of a freestanding chiral nematic poly(nOBA/C6M) film containing 3.13 wt.% of LC756. The film was cold fractured in liquid nitrogen to determine its helical twisting power. The scale bar equals 2 μ m

Figure S2. Polarized optical micrographs of *A.* oriented PA6 and *B.* the LCN/PA6 bilayer actuator with a 0 ° in-plane twist angle (*BA.0*). The homogenous black state between crossed polarizers in the bilayer films is indicative for a self-aligned LCN coating. The yellow dashed line represents the orientation direction of PA6. The scale bars equal 100 μ m.

Figure S3. A cross-sectional scanning electron micrograph of a LCN/PA6 bilayer actuator. The commercial PA6 film is 15 micrometers thick and topped by a spray-applied 4 micrometer LCN coating. The scale bar equals 10 μ m.

Figure S4. Dynamic mechanical analysis of oriented 15 μ m PA6 and 20 μ m LCN films. **A.** Storage moduli (E') of polyamide 6 (PA6, black symbols) and poly(nOBA/C6M) (LCN, red symbols) measured parallel (filled symbols) and perpendicular (open symbols) to the alignment director plotted as a function of relative humidity. **B.** The anisotropic tan δ values of both PA6 and LCN films. **C.** Coefficients of humidity expansion parallel (filled symbols) and perpendicular (open symbols) to the LC alignment director given as a strain (ϵ).

Figure S5. Polarized optical micrographs of **A.** oriented poly(ethylene terephthalate) (PET) and **B.** the LCN/PET bilayer actuator with a 0 ° in-plane twist angle (**BA.0**). The homogenous black state between crossed polarizers in the bilayer films is indicative for a self-aligned LCN coating. The yellow dashed line represents the orientation direction of PET. The scale bars equal 100 μm.

Figure S6. Preliminary results on a pre-dried PA6 with an alternative spray-applied chiral nematic liquid crystal coating that thermally actuates. The images shown are taken at 22 °C and 120 °C in a silicon oil bath.

Finite Element Method

The numerical model was composed in MSC. Marc Mentat[®] (v.2014.0.0) assuming a 2-D geometry of a flat ribbon (20 x 3 x 0.019 mm³). The high aspect ratio (length: thickness) ribbon was subdivided in 40 x 6 solid-shell elements to reduce computational times. A quadratic thin-shell element (Element Type 139) was utilized with all displacements and rotations as degrees of freedom (DOF).

Bilayer actuators were simulated as a composite consisting of a 15 μ m uniaxial PA6 substrate and a 4 μ m LCN coating. Molecular orientation (twisted alignment) was embedded in the LCN coating by treating it as a multi-layer composite (15 layers in total) with a linearly increasing in-plane twist angle over the thickness. The boundary conditions at the clamping position is chosen as a 6-DOF fixed condition at the short end of the ribbon, thereby imposing zero translation/rotation of the 6 nodes at one end. The numerical solver further assumes large-strain behavior, and increases the input value of RH % linearly in time.