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1. The formation energy of monolayer InP3 and possible preparation approachs

We calculate the formation energy of InP3 on the fundamental of reaction process InP + 2P ---> 

InP3, and the results are presented in Table. SI. It can be found that the formation energy in this 

process is about 0.256 eV (64 meV/atom), which is far smaller than the criteria (1 eV) proposed by 

the referee. This indicates that the monolayer InP3 could be synthesized through such reaction 

process in experiment. Meanwhile, it should be mentioned here that bulk InP3 is natural pseudo-

two-dimensional crystal, and possesses planar 2D networks of puckered arsenic-type honeycomb 

structures. The calculated exfoliation energy of bulk InP3 is about 1.32 J/m2 [1], which is on the 

same order of magnitude of that of graphite (about 0.32 0.03 J/m2). That is to say, analogous to ∓

graphene, the monolayer InP3 could also be prepared from its bulk form by utilizing mechanical 

cleavage or liquid phase exfoliation approaches.
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Table SI. The energy of monolayer InP, P atom in black phosphorene, and monolayer InP3.

Reaction process: InP+2P InP3 →

InP 2*P InP3 E∆
Energy (eV) -7.4583 -10.732 -17.9348 0.2555

2. Lagrangian multiplier method used in ShengBTE for enforcing the translational 

invariance constraint of anharmonic force constants

Owning to the fact that the system energy does not change when the system as whole is 

displaced, one have the sum rules for third-order IFCs:

                                 (S1)
∑
𝑘

Φ𝛼𝛽𝛾𝑖𝑗𝑘 = 0

However the directly calculated force constants from ab-initio package do not exactly satisfy 

all the sum rules. Therefore, the IFCs have to be enforced by changing the calculated value slightly 

since the sum rules are crucial to obtain the correct scattering rates especially the low frequencies. 

These can be done by solving an optimization problem. The idea is to add a compensation  to 𝑑𝑖

each independent nonzero element , where i ranges from 1 to the total number of independent 𝜙𝑖

nonzero elements, such that the sum rule condition can be satisfied. In order to guarantee that the 

compensation is small, some additional constraints need to be considered. The ShengBTE code 

minimize the sum of the squares of the compensation for each independent nonzero element, and 

the enforcement of sum rules turns out to be a minimization of a quadratic polynomial subject to 

constraints, which can be easily done by using the Lagrangian multiplier method [2,3]. 

Since all the IFCs can be deduced from the independent elements, the sums can be written in 

terms of these elements as: 
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                                 (S2)
∑
𝑗

𝐴𝑖𝑗Φ𝑗= 𝐵𝑖

where  are integers in the case of a cubic system, and j ranges from 1 to the total number of 𝐴𝑖𝑗

independent sums. Since the sum rules have to be satisfied, the constraints on the compensation are:

                            (S3)
𝑔𝑖 ≡∑

𝑗

𝐴𝑖𝑗Φ𝑗+ 𝐵𝑖= 0

The function to be minimized is:

                                (S4)
𝑓=

1
2∑

𝑗

𝑑2𝑗

After introducing the Lagrangian multiplier , the expression of  in terms of  could be  𝜆𝑖 𝑑𝑖 𝜆𝑖

obtained from

                              (S5)

∂(𝑓+∑
𝑖

𝜆𝑖𝑔𝑖)

∂𝑑𝑗
= 0

from which it follows:

                            (S6)
𝑑𝑗=‒∑

𝑗

𝜆𝑖𝐴𝑖𝑗

Substituting this relation into Eq. (S3), one have 

                             (S7)
∑
𝑗

𝐶𝑖𝑗𝜆𝑖= 𝐵𝑖
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with ,   can be obtained by solving the linear equation arrays, and  is further 
𝐶𝑖𝑗=∑

𝑚

𝐴𝑖𝑚𝐴𝑗𝑚
𝜆𝑗 𝑑𝑗

obtained by using Eq. (S6), When  is added to the independent IFC elements , the sum rules are 𝑑𝑗 𝜙𝑖

completely satisfied and the compensations are minimized. 

3. Self-consistent test of the Grüneisen parameters of monolayer InP3

In order to verify the accuracy of the third-order anharmonic IFCs, we calculate the Grüneisen 

parameters ( ) which reflect the anharmonicity of a material and can be obtained from the 𝛾𝜆

anharmonic 3rd IFCs. Owning to the lacking of experimental data of monolayer InP3, we perform a 

self-consistent test via changing the interaction cutoff of 3rd IFCs as shown in Fig. S1. It can be seen 

that the Grüneisen parameters vary obviously for the anharmonic IFCs when the interaction cutoff 

is short. However, the Grüneisen parameters stay almost unchanged for the interaction cutoff larger 

than fourth nearest neighbors. That is to say, the Grüneisen parameters of InP3 are convergent when 

the interaction cutoff of IFCs is larger than fourth nearest neighbors, which could qualitatively 

characterize the accuracy of anharmonic force constants. Taking the computational accuracy and 

time-consuming of calculation into consideration, the sixth nearest neighbors are chosen as the 

interaction cutoff for the third-order IFCs in the following works.
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Fig. S1. The mode weighted accumulative Grüneisen parameter (MWGP) with respect to the interaction 

cutoff.

4. The thermal stability of monolayer InP3

In this work, we mainly study the possibility of monolayer InP3 in the field of recombination 

of photovoltaic and thermoelectric technologies together. Therefore, high temperature is not 

necessary under this circumstance. In order to demonstrate the thermal stability of monolayer InP3, 

taken 500 K as an example, we perform ab-initio molecular dynamic (AIMD) simulations with 

5 5 1 supercell. From Fig. S2, one can find that after heating at 500 K for 10.0 ps with a time × ×

step of 1.0 fs, the puckered arsenic-type honeycomb networks are well maintained, and all the 

atoms in monolayer InP3 cell are vibrating around their equilibrium positions during the simulations. 

The thermal stability of monolayer InP3 could be further confirmed by the time-dependent evolution 

of total energies, which are oscillating within a very narrow range. Such results indicate that 

monolayer InP3 is suitable for thermoelectric applications with medium temperature zone (around 

500 K) and a promising candidate for achieving the recombination of photovoltaic and 

thermoelectric technologies together.
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Fig. S2. The evolution of total energy and snapshots of monolayer InP3 from AIMD simulations at 500 K.

5. The doping effect on the electronic and phononic properties of monolayer InP3

Based on the rigid band approximation of Boltzmann theory, the low concentration (smaller 

than 0.001 per atom) of monolayer InP3 will only shift the Fermi-level and play a weak influence on 

the electronic structure. It should be noted that this approximation is reasonable as doping 

concentration is low, and has been utilized extensively for theoretical study of thermoelectric 

materials [4-9]. As for the doping effect on the phonon transport properties, the dopants will 

introduce impurity phonon scattering in addition to the intrinsic phonon-phonon scattering. The 

impurity phonon scattering can be considered through incorporating a Reyleigh-type term [10], 

 ( ), where  is the volume of the unit cell,  the group 𝜏𝑖𝑚𝑝
‒ 1 = 𝐴𝜔4 𝐴= (3𝑉20𝑆2)𝑁𝑖𝑚𝑝/𝜋𝑣3 𝑉0 𝑣

velocity of phonon,  the impurity concentration and  denotes the scattering factor setting as 𝑁𝑖𝑚𝑝 𝑆

unity here. This scattering term can be added to the intrinsic phonon-phonon relaxation time by 

using the Matthiessen rule [11], , where  is the total phonon relaxation 𝜏𝑡𝑜𝑡
‒ 1 = 𝜏𝑖𝑛𝑡

‒ 1 + 𝜏𝑖𝑚𝑝
‒ 1 𝜏𝑡𝑜𝑡

time,  and  are the relaxation time induced by the intrinsic phonon-phonon scattering and 𝜏𝑖𝑛𝑡 𝜏𝑖𝑚𝑝
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impurity phonon scattering, respectively. As one can note from Fig. S3(a) that the calculated lattice 

thermal conductivity of monolayer InP3 decreases after impurity phonon scattering are considered. 

However, the effect of such slight reduction of lattice thermal conductivity on the thermoelectric 

figure of merit is quite limited, as shown in Fig. S3(b). This because that the figure of merit depends 

on not only the lattice thermal conductivity but also electronic thermal conductivity.

Fig. R2. (a) The average lattice thermal conductivity of monolayer InP3 with and without considering 

impurity phonon scattering. (b) The thermoelectric figure of merit (ZT) as a function of chemical potential of 

monolayer InP3 along armchair directions. The doted-dashed (solid) line represents the results based on 

lattice thermal conductivity with (without) impurity phonon scattering. 

6. The effect of relaxation time of the thermoelectric performance of monolayer InP3

The electron relaxation time might exist a little difference when electron locates in the band 

edges or within the bands. However, it is quite difficult to calculate the relaxation time within the 

valence or conduction bands from the first-principle calculations. Therefore, in this work we utilize 

the electron relaxation time in the band edges to estimate the thermoelectric performance of 

monolayer InP3, which is also a common treatment in previous first principles thermoelectric 

calculations [4-9]. In order to investigate such influence on thermoelectric performance, we 
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recalculate the room temperature figure of merit (ZT) of InP3 with different electron relaxation time. 

From Fig. S4 one can note that although the relaxation time is reduced by half, the thermoelectric 

figure of merit ZT of monolayer InP3 could still approach 1.51 (with p-type doping) and 0.44 (with 

n-type doping) along armchair and zigzag directions. This result further demonstrates that 

monolayer InP3 is a competitive thermoelectric material. 

 

Fig. S4. The room temperature thermoelectric figure of merit (ZT) as a function of chemical potential of 

monolayer InP3 along (a) armchair and (b) zigzag directions with different electron relaxation time . The 𝜏

electron relaxation time  is estimated from the deformation potential theory [1].𝜏
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