Supporting information

Mesoporous carbon matrix confinement synthesis of ultrasmall WO₃ nanocrystals for lithium ion batteries

Changyao Wang,^a Yujuan Zhao,^a Lili Zhou,^b Yang Liu,^a Wei Zhang,^a Zaiwang Zhao,^a Wael N. Hozzein,^c Hind M. S. Alharbi,^d Wei Li*^a and Dongyuan Zhao*^a ^a Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, *i*ChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China ^bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China

^c Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;

^d Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

* Corresponding authors: Dongyuan Zhao (D.Y.Z); Wei Li (W.L.); E-mail addresses: *dyzhao@fudan.edu.cn; weilichem@fudan.edu.cn*

Figure S1. ¹H NMR spectra of (A) PEO-Br; (B) the synthesized diblock copolymer poly(ethylene oxide)-*block*-polystyrene (PEO₁₁₇-*b*-PS₁₅₆).

Figure S2. The gel permeation chromatograph (GPC) trace of the synthesized diblock copolymer poly(ethylene oxide)-*block*-polystyrene (PEO₁₁₇-*b*-PS₁₅₆).

Figure S3. Scanning transmission microscopy (STEM) image (a) and EDX mapping images of W (b), O (c), C (d) elements of the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites obtained after pyrolysis at 550 °C in N_2 .

Figure S4. The Raman spectrum of the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites obtained after pyrolysis at 550 °C in N₂. Peaks at 1325 and 1587 cm⁻¹ can be attributed to the D and G bands of sp^3 and sp^2 carbon, respectively.

Figure S5. The TGA curve of the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites obtained after pyrolysis at 550 °C in N₂ with a heating rate of 5 °C/min from 50 to 900 °C in air atmosphere. Approximately 16% weight loss is observed between 100 and 600 °C, which is attributed to the decomposition of carbon species in the OMC-WO₃ composites.

Figure S6. The XPS survey spectra (a) and high-resolution W_{4f} (b), O_{1s} (c), and C_{1s} (d) spectra of the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites obtained after pyrolysis at 550 °C in N₂.

Figure S7. The XRD pattern of the ordered mesoporous carbon (OMC) obtained after removal WO₃ nanocrystals from the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites by HF etching.

Figure S8. The EDX spectrum of the ordered mesoporous carbon (OMC) obtained after removal WO₃ nanocrystals from the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites by HF etching.

Figure S9. (a) Nitrogen-sorption isotherms and (b) pore-size distribution curve of the ordered mesoporous carbon (OMC) obtained after removal WO₃ nanocrystals from the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites by HF etching.

Figure S10. The SAXS patterns of the amorphous ordered mesoporous carbon/WO₃ (AOMC-WO₃, a), mesoporous carbon/WO₃ (MC-WO₃, b) and WO₃-nanowire/carbon (WO₃-NW-C, c) composites obtained after pyrolysis at 500, 600 and 650 °C in N_2 , respectively.

Figure S11. The XRD patterns of the amorphous ordered mesoporous carbon/WO₃ (AOMC-WO₃, a), mesoporous carbon/WO₃ (MC-WO₃, b) and WO₃-nanowire/carbon (WO₃-NW-C, c) composites obtained after pyrolysis at 500, 600 and 650 °C in N_2 , respectively.

Figure S12. (a) Nitrogen-sorption isotherms and (b) pore-size distribution curve of the amorphous ordered mesoporous carbon/WO₃ (AOMC-WO₃), mesoporous carbon/WO₃ (MC-WO₃) and WO₃-nanowire/carbon (WO₃-NW-C) composites obtained after pyrolysis at 500, 600 and 650 °C in N_2 , respectively.

Figure S13.TEM image of the mesoporous WO_3 obtained after pyrolysis at 550 °C without addition of resols.

Figure S14. Nyquist plots of the ordered mesoporous carbon/WO₃ (OMC-WO₃, a), mesoporous carbon/WO₃ (MC-WO₃, b), WO₃-nanowire/carbon (WO₃-NW-C, c) composites and ordered mesoporous WO₃ (OM-WO₃, d) at room temperature.