Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Molybdenum Carbide Chemical Sensor with Ultrahigh Signal-to-Noise Ratio and Ambient Stability

Soo-Yeon Cho^{†,‡, -}, Ju Ye Kim^{†,‡,-}, Ohmin Kwon[†], Jihan Kim^{*,†}, and Hee-Tae Jung^{*,†,‡}

[†] Prof. H.-T. Jung, Prof. J. Kim, S.-Y. Cho, J. Y. Kim, O. Kwon Department of Chemical ancd Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea, E-mail: <u>heetae@kaist.ac.kr</u>

* Prof. H.-T. Jung, S.-Y. Cho, J. Y. Kim KAIST Institute for NanoCentury, Daejeon 34141, Korea

⁻⁻ These authors contributed equally to this work

Keywords: transition metal carbides (TMCs), molybdenum carbides, gas sensors, stability, signal-to-noise ratio (SNR)

Table of contents:

- 1. Schematic illustrations of the molybdenum carbide synthesis
- 2. Pore size distribution and BET adsorption graphs
- 3. Table for BET surface area, pore volume and average pore diameter
- 4. Supporting calculations about the lattice d-spacing and related angular
- 5. Schematic illustrations of the gas sensor measurement setup
- 6. Response time of the sensors to wide concentration of ethanol, NH₃ and NO₂
- 7. The real-time NO₂, NH₃, C₂H₅OH response behavior of the one-year old α -MoC_{1-x} and β -Mo₂C sensors under the air condition.
- 8. The resistivity and conductivity measurement of the α -MoC_{1-x} and β -Mo₂C.

Figure S1. Schematic illustration of molybdenum carbide synthesis. x-axis represents reaction time and y-axis shows reaction temperature.

Figure S2. (a) Barrett-Joyner-Halenda (BJH) pore size distributions of synthesized molybdenum carbides (represented as differential pore volume against log scale of pore diameter). **(b)** Nitrogen adsorption isotherm linear plot by Brunauer-Emmett_Teller (BET) model for two phases of molybdenum carbides

Material	BET Surface Area (m²/g)	Pore Volume (cm ³ /g)	Average Pore Diameter (nm)
Commercial MoC _x	0.6031	0.002324	46.2534
α-MoC _{1-x}	66.0359	0.138961	6.5202
β-Mo ₂ C	44.0782	0.171089	11.7959

Table S1. The BET surface area, pore volume and average pore diameter information of molybdenum carbides.

HR-TEM lattice fringe analysis

1. Cubic structure (MoC_{1-x}, JCPDS 01-077-7176)

$$a = b = c = 4.244973 \quad \mathring{A}, \qquad \alpha = \beta = \gamma = 90^{\circ}$$

$$|\vec{a}^*| = |\vec{b}^*| = |\vec{c}^*| = \frac{1}{a}$$

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$d_{111} = \frac{4.244973 \quad \mathring{A}}{\sqrt{3}} = 2.45 \quad \mathring{A} \quad , \qquad d_{220} = \frac{4.244973 \quad \mathring{A}}{\sqrt{8}} = 1.501 \quad \mathring{A}$$

$$\cos \phi = \frac{h_1 h_2 + k_1 k_2 + l_1 l_2}{\sqrt{h_1^2 + k_1^2 + l_1^2} \sqrt{h_2^2 + k_2^2 + l_2^2}}$$

$$\cos \phi = \frac{4}{\sqrt{3}\sqrt{8}} = 0.8165$$

$$\therefore \phi = 35.26^{\circ}$$
2. Orthorhombic structure (\beta-Mo_2C, JCPDS 01-077-0720)

$$a \neq b \neq c, \qquad a = 6.041758 \quad \mathring{A}, \qquad b = 4.745728 \quad \mathring{A}, \qquad c = 5.214426 \quad \mathring{A}$$

$$\alpha = \beta = \gamma = 90^{\circ}$$

$$|\vec{a}^*| = \frac{1}{a} \quad , |\vec{b}^*| = \frac{1}{b} \quad , |\vec{c}^*| = \frac{1}{c}$$

$$d_{hkl} = \frac{1}{\sqrt{(\frac{h}{a})^2 + (\frac{k}{b})^2 + (\frac{l}{c})^2}}$$

$$d_{020} = \frac{1}{\sqrt{\frac{4}{4.745728^2}}} \mathring{A} = 2.37 \mathring{A}$$

$$d_{211} = \frac{1}{\sqrt{\frac{4}{6.041758^2} + \frac{1}{4.745728^2} + \frac{1}{5.214426^2}}} \mathring{A} = 2.29 \mathring{A}$$

$$\cos \emptyset = \frac{\frac{h_1 h_2}{a^2} + \frac{k_1 k_2}{b^2} + \frac{l_1 l_2}{c^2}}{\sqrt{\frac{h_1^2}{a^2} + \frac{k_1^2}{b^2} + \frac{l_1^2}{c^2}} \sqrt{\frac{h_2^2}{a^2} + \frac{k_2^2}{b^2} + \frac{l_2^2}{c^2}}}$$
$$\cos \emptyset = \frac{\frac{2}{b^2}}{\sqrt{\frac{4}{b^2}} \sqrt{\frac{4}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} = 0.48245$$
$$\therefore \emptyset = 61.15^0$$

Figure S3. Schematic of the overall gas delivery system. Various analytes and N_2 was introduced in a controlled manner into the reaction chamber by using the MFC, tubing system, and multi-position valve. The serial dilution system was also used to obtain 2.5–30000 ppm concentrations of the analyzed gas.

Figure S4. Response time of the α -MoC_{1-x} and β -Mo₂C sensors onto wide concentration range of (a) ethanol, (b) NH₃ and (c) NO₂.

Figure S5. The real-time NO₂ (5 ppm), NH₃ (5 ppm), C₂H₅OH (1000 ppm) response behavior of the one-year old α -MoC_{1-x} and β -Mo₂C sensors under the air condition.

Figure S6. (a) Photo-image of the powder resistivity measurement setup (HPRM-M2, HANTECHTM). (b) Pellet form of the α -MoC_{1-x} and β -Mo₂C after measurement with pressing. (c) Resistivity and (d) conductivity of the α -MoC_{1-x} and β -Mo₂C with varied pressure.