Supporting Information

Changes of dye adsorption state induced by ferroelectric polarization to improve photoelectric performance

Dongmei Xie,^{1,2} Yuan Lin,^{1,2, *} Nianqing Fu,³ Pin Ma,^{1,2} and Xiaowen Zhou¹

¹Beijing National laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

²University of Chinese Academy of Sciences, Beijing 100049, P. R. China

³School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

*Email: <u>linyuan@iccas.ac.cn</u>

Supplemental figures

Figure S1 XPS spectra of BaTiO₃ powder (up), XPS spectra of B/T(4) powder (down)

XPS was used to confirm the presence and chemical states of Ba, O and Ti in our samples. As shown in Figure S1, the Ba_{3d} photoelectron peak from BaTiO₃ and B/T(4)was almost unchanged. The signal-to-noise ratio of B/T(4) spectrum decreased, indicating that BaTiO₃ was covered by TiO₂. Compared to BaTiO₃, the Ti_{2p} photoelectron peak from B/T(4) revealed positive shift about 0.5eV. This can be attributed to the formation of TiO₂. The O_{1s} spectrum for B/T(4) can be deconvoluted to three peaks. The large peak at 529.75 eV from B/T(4) was assigned to lattice oxygen in BaTiO₃ and TiO₂, whereas the photoelectron peaks located at 531.84eV and 533.02 eV could be attributed to hydroxyl O atoms and C-O groups, respectively. TiO₂ induced increasement of hydroxyl O atoms peak intensity and the appearance of the peak of C-O groups.These observations confirmed the coating of TiO₂ on BaTiO₃ by TiCl₄ treatment.¹⁻⁴

Figure S2. Current density-voltage characteristics of the DSSCs employing the $B/T((0)\sim(5))$ photoanodes.

Table S1. Photovoltaic properties of DSSCs employing the $B/T((0)\sim(5))$ photoanodes.							
Samples	$J_{ m sc}$	$V_{ m oc}$	FF	PCE	Dye loading		
	(mA cm ⁻²)	(mV)		(%)	(×10 ⁻⁸ mol cm ⁻²)		
B/T(0)	0.07	760	0.45	0.03	0.49		
B/T(1)	3.89	740	0.83	2.39	0.66		
B/T(2)	7.70	740	0.71	4.08	0.75		
B/T(3)	9.04	740	0.71	4.76	0.87		

B/T(4)	12.59	745	0.66	6.22	1.24
B/T(5)	4.25	720	0.67	2.07	2.26

The photoelectric performance of the film affected by cycles of TiCl₄ treatment is presented in Figure S2. The corresponding photovoltaic parameters are listed in Table S1. The PCE of the DSSC with B/T(0) photoanode (pure BaTiO₃) was close to zero and increased to 2.39% after 1 cycle of TiCl₄ treatment. The cell with B/T(4) photoanode obtains the maximum J_{sc} and PCE of 12.59 mA cm⁻² and 6.22% respectively. With the increase cycles of TiCl₄ treatment, the J_{sc} changed most obviously among all the photovoltaic parameters of the cell. One of the reason about the J_{sc} enhancement was associated with the increment of TiO₂ particles amount as shown in TEM (Fig. 2b~f), which could absorb more dye. In addition, more and more TiO₂ particles made cohesiveness between particles better and formed conductive network promoting electrons transportation. On the other side, much more TiO₂ particles made the pores in the nanocrystalline film smaller and even blocked the channels, thus inhibiting the penetration of electrolyte. That was the reason for the reduction of the J_{sc} after the 5 cycles of the TiCl₄ treatment.

Figure S3. The cross-section SEM images of BaTiO₃ with one layer (a), two layers (b), three

layers (c) and the current density-voltage characteristics of the DSSCs employing the B/T(4) photoanodes of different BaTiO₃ layer number.

Table S2. Photovoltaic properties of DSSCs employing the B/T(4) photoanodes of different BaTiO₃ layer number

Layer number	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (mV)	FF	PCE (%)	Thickness of BaTiO ₃ thin films (μm)
One layer	12.59	745	0.66	6.22	4
Two layers	10.87	775	0.72	6.06	4.2
Three layers	10.14	775	0.75	5.91	4.2

Figure S3 a~c shows the thickness of BaTiO₃ film of different layer number. We can observe that the thickness of BaTiO₃ film remains almost constant from one layer to three layers. The paste may be not easy to adhesive on the top of BaTiO₃ film. So, the successive paste did not increase film thickness very much. We also investigated the effect of the thickness of BaTiO₃ film of B/T(4) on the cell performances. The current density-voltage (J-V) curves are shown in Figure S2 and the photoelectric conversion parameters are listed in Table S2. As the number of BaTiO₃ layers increased, the J_{sc} and PCE of the cell decreased, and the V_{oc} and FF of the cell increased. As the BaTiO₃ film thickness increases not much with the film layers, dye adsorption amount is also only increase slightly. And multi-layer coating of BaTiO₃ may destroy the pore structure of the first layer. These reasons lead to the J_{sc} decline. The PCE of the cell with one BaTiO₃ layers, two BaTiO₃ layers and three BaTiO₃ layers were 6.22%, 6.06% and 5.91% respectively. Considering the best photoelectric performance, we choose BaTiO₃ film with one layer to prepare B/T(4) photoanode.

References

- 1. Miot, C.; E. Husson, C.; Proust, R. E.; and Coutures, J. P.; *Journal of the European Ceramic Society* **1998**, 18, 339-343
- 2. Duan Y.D.; Fu, N.Q.; Liu, Q.P.; Fang, Y.Y.; Zhou, X.W.; Zhang, J.B.; and Lin, Y.,
- J. Phys. Chem. C 2012, 116, 8888-8893
- 3. Xu, H.; Zhang, L. J. Phys. Chem. C 2010, 114 (26), 11534–11541.
- 4. Bullock, E. L.; Patthey, L.; Steinemann, S. G., Surf. Sci. 1996, 352-354 (0), 504-510.