Electronic Supplementary Information (ESI)

Tailoring the porosity of MOF-derived N-doped carbon electrocatalysts for highly efficient solar energy conversion

Jin Soo Kang,^{‡ab} Jiho Kang,^{‡ab} Dong Young Chung,^{‡ab} Yoon Jun Son,^{ab} Seoni Kim,^b

Sungjun Kim,^{ab} Jin Kim,^{ab} Juwon Jeong,^{ab} Myeong Jae Lee,^c Heejong Shin,^{ab} Subin Park,^{ab}

Sung Jong Yoo,^c Min Jae Ko,^d Jeyong Yoon^{be} and Yung-Eun Sung*ab

^aCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.

^bSchool of Chemical and Biological Engineering and Institute of Chemical Processes (ICP), Seoul National University, Seoul 08826, Republic of Korea.

^cFuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

^dDepartment of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea.

^eAsian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University, Seoul 08826, Republic of Korea.

‡J. S. Kang, J. Kang, and D. Y. Chung contributed equally to this work.

*Corresponding author. Tel: +82-2-880-1889; Fax: +82-2-888-1604; E-mail: ysung@snu.ac.kr

	Areal Ratio (%)		
	С–С	С-О	С=0
ZIF-8-C	79.12	11.37	9.51
ZIF-8-dopa-C	76.24	11.32	12.44
		Areal Ratio (%)	
	Pyridinic N	Areal Ratio (%) Pyrrolic N	Graphitic N
ZIF-8-C	Pyridinic N 47.73	Areal Ratio (%) Pyrrolic N 38.21	Graphitic N 14.06

Table S1. Summary of fitting results for XPS (a) carbon 1s and (b) nitrogen 1 s spectra of ZIF-8-C and ZIF-8-dopa-C.

(a) Carbon 1s

Temperature	$R_{\rm s}$ ($\Omega \ {\rm cm}^2$)	$R_{ m ct}$ ($\Omega \ m cm^2$)	$R_{ m dif}$ ($\Omega \ m cm^2$)
283 K	5.961	2.479	1.076
293 K	5.924	1.672	0.9594
303 K	5.861	1.153	0.8575
313 K	5.830	0.8061	0.7811
323 K	5.776	0.5361	0.7301

Table S2. Summary of fitting results for EIS spectra of the symmetric cells employing (a)platinum, (b) ZIF-8-C, and (c) ZIF-8-dopa-C electrodes.

(a) Platinum

(b) ZIF-8-C

Temnerature	R _s	R _{ct}	$R_{ m dif}$
Temperature	$(\Omega \ \mathrm{cm}^2)$	$(\Omega \text{ cm}^2)$	$(\Omega \ \mathrm{cm}^2)$
283 K	7.432	70.60	10.75
293 K	7.119	43.77	9.303
303 K	6.503	28.75	7.647
313 K	6.562	19.95	5.898
323 K	6.511	12.66	4.964

(c) ZIF-8-dopa-C

Temperature	R _s (Ω cm ²)	$R_{ m ct}$ ($\Omega m cm^2$)	$R_{ m dif}$ ($\Omega \ m cm^2$)
283 K	4.326	2.252	1.475
293 K	4.258	1.441	1.367
303 K	4.340	0.9747	1.276
313 K	4.218	0.6978	1.186
323 K	4.107	0.4857	1.113

Counter Electrode Material	Fill Factor (%)	Efficiency (%)	Reference
Carbon Black	68.5	9.10	(1)
Carbon Black	65.6	7.20	(2)
Carbon Black	71.3	8.35	(3)
Carbon Black + Graphite	71.2	6.67	(4)
Carbon Nanofiber	70	7.00	(5)
Single-Walled Carbon Nanotube	74	7.81	(6)
Single-Walled Carbon Nanotube	58.7	8.31	(7)
Multi-Walled Carbon Nanotube	64	7.67	(8)
Multi-Walled Carbon Nanotube	71	7.63	(6)
Reduced Graphene Oxide	72	7.19	(9)
N- and P-doped Graphene	72	8.57	(10)
Graphite Nanoball	67	7.88	(11)
Ordered Mesoporous Carbon	65	7.50	(12)
Carbonized ZIF-8	68	7.32	(13)
ZIF-8-dopa-C	72.8	9.03	our work

Table S3. Fill factors and power conversion efficiencies of DSCs employing carbon-based CEs reported in previous publications and from our experiment. The comparison on the performances is limited to the N719 dye- and I_3^{-}/I^{-} redox electrolyte-based cells for proper evaluations.

	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	η (%)
Platinum	0.807	12.76	68.7	7.07
ZIF-8-C	0.701	12.01	57.5	4.84
ZIF-8-dopa-C	0.749	12.17	67.2	6.12

Table S4. Summary of J-V characteristics for DSCs employing $[Co(bpy)_3]^{3+/2+}$ redox electrolyte and platinum, ZIF-8-C, and ZIF-8-dopa-C CEs.

Fig. S1. (a-d) TEM images of ZIF-8-C obtained at diverse magnifications.

Fig. S2. (a-d) TEM images of ZIF-8-dopa-C obtained at diverse magnifications.

Fig. S3. TGA curve of polydopamine shell prepared by removal of ZIF-8 from ZIF-8-dopa.

Fig. S4. (a) XPS C 1s spectra of ZIF-8-C and ZIF-8-dopa-C and (b,c) their fitted results; (b) ZIF-8-C and (c) ZIF-8-dopa-C.

Fig. S5. XPS N 1s spectra of (a) ZIF-8-C and (b) ZIF-8-dopa-C and their fitted results.

Fig. S6. Peak current densities vs. (scan rate)^{1/2} plots of Pt, ZIF-8-C, and ZIF-8-dopa-C obtained from the I_3^{-}/I^{-} peak of the CV data measured at various scan rates (30, 60, 90, 120, 150 mV/s).

Fig. S7. Equivalent circuit for EIS analyses of symmetric cells.

Fig. S8. Enlarged Nyquist plots of the symmetric cells employing (a) Pt, (b) ZIF-8-C, and (c) ZIF-8-dopa-C CEs near the high-frequency region.

Fig. S9. CV diagrams showing the specific capacitance vs. potential plots for (a) ZIF-8-C and (b) ZIF-8-dopa-C measured at diverse scan rates using 1.0 M NaCl electrolyte.

Fig. S10. CV diagrams showing the specific capacitance vs. potential plots for (a) ZIF-8-C and (b) ZIF-8-dopa-C measured at diverse scan rates using 1.0 M NaClO₄ electrolyte.

Fig. S11. Raman spectra of (a) ZIF-8-C and (b) ZIF-8-dopa-C.

Fig. S12. *J*–*V* curves of DSCs employing $[Co(bpy)_3]^{3+/2+}$ redox electrolyte and platinum, ZIF-8-C, and ZIF-8-dopa-C CEs measured under standard 1 sun illumination (AM 1.5G condition).

Notes and references

- 1 T. Murakami, S. Ito, Q. Wang, M. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy and M. Grätzel, *J. Electrochem. Soc.*, 2006, **153**, A2255-A2261.
- 2 J. Kim and S. Rhee, *Electrochim. Acta*, 2012, **83**, 264-270.
- 3 C. Wu, T. Chang, H. Teng and Y. Lee, *Energy*, 2016, **115**, 513-518.
- 4 A. Kay and M. Grätzel, Sol. Energy Mater. Sol. Cells, 1996, 33, 99-117.
- 5 G. Veerappan, W. Kwon and S. Rhee, J. Power Sources, 2011, 196, 10798-10805.
- 6 X. Mei, S. Cho, B. Fan and J. Ouyang, *Nanotechnology*, 2010, **21**, 395202.
- 7 J. Ma, C. Li, F. Yu and J. Chen, ChemSusChem, 2014, 7, 3304-3311.
- 8 W. Lee, E. Ramasamy, D. Lee and J. Song, *ACS Appl. Mater. Interfaces*, 2009, **1**, 1145-1149.
- 9 H. Zheng, C. Neo, X. Mei, J. Qiu and J. Ouyang, J. Mater. Chem., 2012, 22, 14465-14474.
- 10 C. Yu, Z. Liu, X. Meng, B. Lu, D. Cui and J. Qiu, Nanoscale, 2016, 8, 17458-17464.
- 11 Y. Li, C. Li, M. Yeh, K. Huang, P. Chen, R. Vittal and K. Ho, *Electrochim. Acta*, 2015, **179**, 211-219.
- 12 M. Wu, X. Lin, T. Wang, J. Qiu and T. Ma, Energy Environ. Sci., 2011, 4, 2308-2315.
- 13 X. Sun, Y. Li, J. Dou, D. Shen and M. Wei, J. Power Sources, 2016, 322, 93-98.