Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Efficient amplification strategy for N-doped $NiCo_2O_4$ with oxygen vacancies and partially Ni/Co-nitrides as a dual-functional electrode for both supercapattery and hydrogen electrocatalysis

Keorock Choi,^{a⊥} In Kyu Moon,^{b⊥} and Jungwoo Oh^{*a}

^aSchool of Integrated Technology and Yonsei Institute of Convergence Technology, Yeonsu-gu, Incheon

21983, Republic of Korea

^bYonsei Institute of Convergence Technology, Yonsei University, Yeonsu-gu, Incheon 21983, Republic of Korea.

*Corresponding author. jungwoo.oh@yonsei.ac.kr

 $^{\perp}$ I.K. Moon and K. Choi contributed equally to this work.

Fig. S1. XRD patterns of pristine NCO and N-doped NCO electrodes. Symbols indicate diffraction peaks from Ni- (JCPDS No.10-0280) and Co-nitrides (JCPDS No. 15-0806).

Fig. S2. XPS survey spectra of pristine NCO and N-doped NCO electrodes.

Fig. S3. High resolution XPS O 1s spectra of pristine NCO and N-doped NCO electrodes.

Fig. S4. CV curves of pristine NCO and N-doped NCO electrode at various scan rates.

Fig. S5. GCD curves of pristine NCO and N-doped NCO electrode at various current densities.

Fig. S6. Plot of potential drop vs. applied current density.

Fig. S7. Plot of Rct vs. nitrided Ni/Co content.

Fig. S8. The potential difference ($\Delta E = E40mA \cdot cm^{-2} - E10mA \cdot cm^{-2}$) of pristine NCO and N-doped NCO electrodes.

Fig. S9. Comparison of calculated exchange current densities to measured values.

Fig. S10. (a) SEM images of NCO electrodes before and after 100,000 s stability test.

Fig. S11. C_{dl} measurement linear fitting of the capacitive currents against the scan rate to fit a linear regression.