Electronic supplementary information (ESI)

Functionalization of the Carbon Additive of a High-Voltage Li-Ion Cathode

Hamidreza Saneifar¹, Nicolas Delaporte¹, Karim Zaghib^{2*} and Daniel Bélanger^{1*}

 Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal (Québec) Canada H3C 3P8.

2. Institut de Recherche d'Hydro-Québec (IREQ), 1800 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S1. Corresponding author: E-mail: belanger.daniel@uqam.ca E-mail: zaghib.karim@ireq.ca

1. Surface area of LMN and acetylene black (AB).

The BET surface area of the LMN and AB powders was ~ 0.6 and 80 m²/g¹, respectively. Considering the weight percentages of LMN and AB in the electrode (80 and 10 wt. %, respectively), the surface area of AB exposed to the electrolyte is at least 10 times larger than that of LMN. Thus, it is anticipated that the functionalization of AB will strongly affect processes at the electrolyte/electrode interface and have a strong influence on cell performance.

2. X-ray diffraction

The XRD patterns of modified and unmodified AB carbon powders are presented in Figure S1. This carbon showed three distinguishable diffraction peaks (002), (100) and (110), which indicate a partially graphitic structure. An additional low intensity peak (004) at $2\Theta = 54^{\circ}$ confirms that AB carbon is slightly graphitized, is generally observed for graphite but is more intense². This result confirms that PF₆⁻ anions could intercalate in the graphitic domains of AB carbon at high voltage, leading to its degradation and poor cycle life of the Li-ion battery³.

Figure S1. XRD patterns of modified and unmodified AB carbon powders. The patterns are typical of a slightly graphitized carbon.

3. Electrochemical characterization.

Cyclic voltammetry. Figure S2 shows the cyclic voltammogram (2nd cycle) for the aluminum current collector (bare electrode) recorded between: a) 2.5 and 4.8 V and b) 2.5 and 5.3 V vs. Li/Li⁺. In contrast, the intensity of the current between 4.5 and 5.3 V vs. Li/Li⁺ is much lower for the carbon electrodes in Figure 2. The charge evaluated for unmodified and modified AB carbons are included in Table S1.

Figure S2. Cyclic voltammograms (2^{nd} cycle) for the aluminum current collector (bare electrode) in 1 M LiPF₆ EC:DEC:DMC electrolyte at a scan rate of 10 mV.s⁻¹ recorded between: a) 2.5 and 4.8 V and b) 2.5 and 5.3 V vs. Li/Li⁺.

Table S1. Q charge and Q discharge (mAh) determined from cyclic voltammograms (2^{nd} cycle) obtained for the Al current collector (bare), unmodified (AB) and modified carbon (AB-X, where X = CF₃, N(Et)₂, SO₃H and COOH) electrodes in 1 M LiPF₆ EC:DEC:DMC electrolyte at a scan rate of 10 mV.s⁻¹ recorded between 2.5 and 4.8 V and 2.5 and 5.3 V vs. Li/Li⁺.

	4.	8 V	5.3 V					
	Q charge	Q discharge	Q charge	Q discharge				
	(Oxidation)	(Reduction)	(Oxidation)	(Reduction)				
	mAh	mAh	mAh	mAh				
Al bare	0.00029	0.00026	0.00046	3.25 x 10 ⁻⁷				
AB	0.01334	0.00841	0.24978	0.01238				
AB-CF ₃	0.00575	0.00576	0.28262	0.06227				
AB-COOH	0.01532	0.00552	0.19395	0.01814				
AB-SO ₃ H	0.00634	0.00696	0.20192	0.04389				
$AB-N(Et)_2$	0.00698	0.00529	0.17535	0.00896				

Galvanostatic cycling of carbon electrodes. Figure S3 presents the charge (Figure S3a) and the discharge (Figure S3b) capacities obtained for unmodified (AB) and modified carbon (AB-X, where X = CF_3 , N(Et)₂, SO₃H and COOH) electrodes over 10 cycles. The charge capacity of the modified carbon electrodes was one order of magnitude lower, suggesting that electrolyte degradation was considerably reduced. The discharge capacities for all of the carbon electrodes were relatively low and primarily due to the electrical double-layer capacitance⁴. However, the slightly higher discharge electrode capacities obtained for unmodified AB carbon could be due to the intercalation/deintercalation of PF_6^- anions between the graphitic sheets of carbon⁵.

Figure S3. a) Charge and b) discharge capacities (per g of active material) obtained for unmodified (AB) and modified carbon (AB-X, where $X = CF_3$, N(Et)₂, SO₃H and COOH) electrodes cycled with a constant current of 50 mA.g⁻¹ between 2.5 and 5.3 V vs. Li/Li⁺ for 10 cycles. Note the break (between 300 and 1000 mAh.g⁻¹) on the charge capacity axis of the left-hand side figure.

Galvanostatic cycling of LMN electrodes. Table S2 reports the discharge capacity of several half-cells. The electrochemical experiments were repeated three times and the discharge capacities of the LMN half-cells (10th discharge capacity at C/10) are reproducible.

Table S2. Discharge capacities $(10^{th} \text{ cycle}, \text{ in mAh.g}^{-1})$ obtained for three different LMN half-cells containing unmodified (LMN-AB) and modified carbons (LMN-AB-X, where $X = CF_3$, N(Et)₂, SO₃H and COOH) and cycled at a rate of C/10 between (top) 3.5 and 5 V and (bottom) 3.5 and 5.3 V vs. Li/Li⁺. Average and standard deviation (SD) values are also included.

5 V	LMN- AB	LMN- AB-CF ₃	LMN-AB- COOH	LMN-AB- SO ₃ H	LMN-AB- N(Et) ₂		
Cell1 (mAh.g ⁻¹)	86.8	117.7	106.7	116.2	104.1		
Cell2 (mAh.g ⁻¹)	85.1	116.6	105.4	115.4	103.8		
Cell3 (mAh.g ⁻¹)	86.5	115.3	105.9	116.1	104.0		
Average ±SD	86.1±0.7	116.5±0.9	106.0±0.5	115.9±0.3	104.0±0.1		
_							
5.3 V	LMN- AB	LMN- AB-CF ₃	LMN-AB- COOH	LMN-AB- SO ₃ H	LMN-AB- N(Et) ₂		
5.3 V Cell1 (mAh.g ⁻¹)	LMN- AB 88.7	LMN- AB-CF₃ 114.3	LMN-AB- COOH 106.9	LMN-AB- SO₃H 121.3	LMN-AB- N(Et) ₂ 106.2		
5.3 V Cell1 (mAh.g ⁻¹) Cell2 (mAh.g ⁻¹)	LMN- AB 88.7 87.1	LMN- AB-CF ₃ 114.3 113.8	LMN-AB- COOH 106.9 105.1	LMN-AB- SO ₃ H 121.3 120.8	LMN-AB- N(Et) ₂ 106.2 105.9		
5.3 V Cell1 (mAh.g ⁻¹) Cell2 (mAh.g ⁻¹) Cell3 (mAh.g ⁻¹)	LMN- AB 88.7 87.1 88.6	LMN- AB-CF ₃ 114.3 113.8 114.5	LMN-AB- COOH 106.9 105.1 106.7	LMN-AB- SO ₃ H 121.3 120.8 121.1	LMN-AB- N(Et) ₂ 106.2 105.9 106.5		

Comparison of discharge capacities. Table S3 compares discharge capacities obtained for LMN-AB half-cells containing unmodified carbon (LMN-AB) and those extracted from the literature.

Capacity (mAh/g)	Voltage (V)	C rate	References
87	3.5-4.9	C/12	6
103	3.5-5	C/10	7
100	3.5-4.85	C/7.5	8
97	3.4-4.9	C/10	9
108	3.5-4.9	C/10	10
127	3.5-5	C/5	11
121	36-4.9	C/10	12
131	3.5-4.9	C/5	13
88	3.5-5	C/10	This work
96	3.5-5.3	C/10	This work

Table S3. Discharge capacities of LMN-AB half-cells from our study and the literature.

Table S4. Atomic content (at. %) determined from XPS spectra for: a) unmodified (AB), modified carbon electrode (AB-X, with $X = N(Et)_2$ or SO₃H) following cycling at 50 mA/g between 2.5 and 5.3 V for 7 cycles and: b) LMN electrodes with unmodified (LMN-AB) and modified carbons (LMN-AB-X, where $X = CF_3$ and SO₃H) following cycling at C/10 between 3.5 and 5.3 V for 15 cycles.

																Ľ	/									
AB-N(Et)2								AB-SO ₃ H	AB					AB ele												
Atomic content (at. %)	Peak area (%)	FWHM (eV)	B.E. (eV)			Atomic content (at. %)	Peak area (%)	FWHM (eV)	B.E. (eV)			Atomic content (at. %)	Peak area (%)	FWHM (eV)	B.E. (eV)		ctrodes									
	52.8	1.1	284.5	c-c			50.2	1.3	284.5	C-C			17.9	1.5	284.4	C-C	C1s									
	16.9	1.1	286.3	CH_2			15.6	1.3	286.1	CH_2			29.8	1.5	286	CH_2										
C1s 60.7	10.5	1.1	286.8	C-0	C1s	C1s 61.1	9	1.3	286.5	C-0	C1s	C1s 47.7	19.6	1.5	286.5	C-0										
	3.6	1.1	288.6	C=0				1								10	1.33	288	C=0			6.2	1.5	288.4	C=0	
	16.2	1.1	291	CF_2					15.1	1.3	290.8	CF_2			26.4	1.5	290.7	CF_2								
			-	LiF	F1s				-	LiF			10.1	1.5	685.7	LiF										
F1s 26.1	35.7	1.5	687.2	P-F		F1s	F1s 27.5	25.9	1.7	687.1	P-F	F1s	F1s 34.3	56.2	1.5	687.7	P-F	F1s								
	64.3	1.5	688.2	PVDF			74.1	1.7	688.3	PVDF			33.7	1.5	688.8	PVDF										
	41.7	1.5	134.5	Li _x PF _y O _z			33.3	2.1	134.4	$Li_x PF_yO_z$			76.9	1.8	134.3	$Li_x PF_yO_z$	I									
P2p 0.7	58.3	1.5	135.6	Li _x PF _y	P2p	P2p 0.5	66.7	2.1	135.9	$Li_x PF_y$	p2p	P2p 1.9	23	1.8	135.9	Li _x PF _y	P2p									
01s 11.5				-		01s 9.5						01s 15.3														
N1s 0.3						N1s 0.3						N1s -														
S2p -						S2p 0.4						- -														

The unmodified and modified acetylene black (AB) carbons were mixed with polyvinylidenedifluoride in a 0.8:1 weight ratio to fabricate the electrodes.

LMN-AB- CF ₃							LMN-AB					LMN ele					
Atomic content (at. %)	Peak area (%)	FWHM (eV)	B.E. (eV)			Atomic content (at. %)	Peak area (%)	FWHM (eV)	B.E. (eV)			Atomic content (at. %)	Peak area (%)	FWHM (eV)	B.E. (eV)		ectrodes
	49.9	1.3	284.6	C-C			43.4	1.3	284.7	c-c			24.3	1.6	284.6	C-C	
	17.4	1.3	286	CH_2			21.7	1.3	286.2	CH_2			24.3	1.6	286.2	CH_2	
C1s 62.1	10	1.3	286.3	C-0	C1s	C1s 53.4	C1s C-O 286.5 9.5 C1s S3.4	Cls 56	19.4	1.6	286.6	C-0	C1s				
	15	1.3	288.1	C=0	-		5.22	1.3	288.1	C=0			9.7	1.6	288.2	C=0	1
	7.5	1.3	290.4	CF ₂				20	1.3	290.7	CF_2			22.2	1.6	290.6	CF_2
01s 10.1	38.5	2.2	533	C-0		01s 18.7	31.2	2.1	533.3	C-0			37.1	2	533	C-0	01s
	53.8	2.2	531.6	C=0	01s		56.2	2.1	531.9	C=O	01s	01s 17.2	59.5	2	531.6	C=0	
	7.7	2.2	529.3	M-O			12.5	2.1	529. 8	M-O			3.3	2	529.6	M-O	
				LiF						LiF			9.3	1.2	685.5	LiF	
F1s 25.7	33.3	1.4	687.3	P-F	F1s	F1s 22.4	37.4	1.6	687.4	P-F	F1s	F1s 25.5	54.3	1.8	687.3	P-F	F1s
	66.7	1.8	688.2	PVDF			62.5	1.6	688.3	PVDF			36.1	1.8	688.3	PVDF	
P	62.5	1.8	134.2	Li _x PF _y O _z	P	P 1	35.7	2.1	134.3	Li _x PF _y O _z	Р	P2p 0.8	43.4	1.9	134.2	Li _x PF _y O _z	
2p).7	37.5	1.8	136.2	Li _x PF _y	2p	P2p 1.1	64.3	2.1	136.2	Li _x PF _y	2p		56.5	1.9	135.9	Li _x PF _y	2p
N1s						N1s 0.2						N1s -					
S2p						S2p <0.1						S2p -					
Mn2p 0.9						Mn2p 2						Mn2p 0.4					
Ni2p <0.1						Ni2p 0.3						Ni2p <0.1					

The $LiMn_{1.5}Ni_{0.5}O_4$ (LMN) powder was mixed with unmodified and modified acetylene black (AB) carbon and polyvinylidenedifluoride (PVDF) in a weight ratio of 80:10:10

<u>(</u>d

References

- 1 A. Gambou-Bosca, D. Bélanger, J. Mater. Chem. A, 2014, **2**, 6463-6473.
- 2 Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, Carbon N. Y, 2007, **45**, 1686–1695.
- 3 X. Qi, B. Blizanac, A. Dupasquier, P. Meister, T. Placke, M. Oljaca, J. Li, M. Winter, Phys. Chem. Chem. Phys, 2014, **16**, 25306–25313.
- 4 A.J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science, 2015, **313**, 1760–1763.
- 5 T. Ishihara, M. Koga, H. Matsumoto, M. Yoshio, Electrochem. Solid-State Lett, 2007, **10**, A74–A76.
- 6 H. Duncan, D. Duguay, Y. Abu-Lebdeh, I.J. Davidson, J. Electrochem. Soc, 2011,158, A537– A545.
- 7 C.J. Jafta, M.K. Mathe, N. Manyala, W.D. Roos, K.I. Ozoemena, ACS Appl. Mater. Interfaces, 2013, **5**, 7592–7598.
- 8 H.-M. Cho, M.V. Chen, A.C. MacRae, Y.S. Meng, ACS Appl. Mater. Interfaces, 2015, **7**, 16231– 16239.
- 9 F. Ulu Okudur, J. D'Haen, T. Vranken, D. De Sloovere, M. Verheijen, O.M. Karakulina, A.M. Abakumov, J. Hadermann, M.K. Van Bael, A. Hardy, RSC Adv, 2018, **8**, 7287–7300.
- 10 Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan, Y. Bai, Electrochim. Acta. 2015, **158**, 73–80.
- 11 D. Liu, Y. Bai, S. Zhao, W. Zhang, J. Power Sources. 2012, **219**, 333–338.
- 12 H. Dong, G.M. Koenig, J. Mater. Chem. A. 2017, 5, 13785–13798.
- 13 P. Axmann, G. Gabrielli, M. Wohlfahrt-Mehrens, J. Power Sources. 2016, **301**, 151–159.