Ultrafast solid-state lithium ion conductor through alloying

induced lattice softening of Li₆PS₅Cl

Minjie Xuan,^{a,b} Weidong Xiao,^{a,b} Hongjie Xu,^{a,b} Yonglong Shen,^{a,b} Zhenzhen Li,^a Shijie Zhang,^{a,b} Zhuo Wang*^{a,b} and Guosheng Shao*^{a,b}

^aState Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China.
^bZhengzhou Materials Genome Institute (ZMGI), Building 2, Zhongyuanzhigu, Xingyang, Zhengzhou 450100, China

*Corresponding author emails: <u>gsshao@zzu.edu.cn</u>; <u>wangzh@zzu.edu.cn</u>

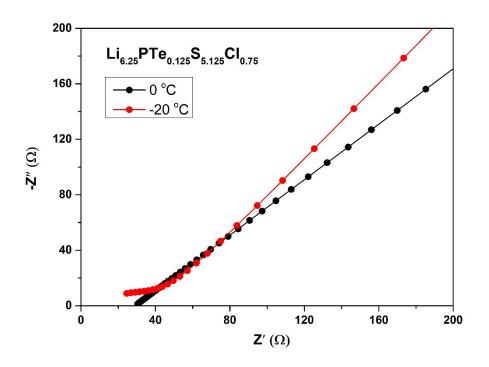


Fig. S1 Temperature dependence of impedance for the $Li_{6.25}PTe_{0.125}S_{5.125}Cl_{0.75}$ alloy, at -20 and 0 ^{0}C .

Preparation of all-solid-state cell

The whole preparation process was carried out under an argon atmosphere inside a glove box. The flow delay coating method was used to prepare cathode and electrolyte separator of the all-solid-state cell. Thin plates of lithium were used as anode.

The preparation of cathode coating:

The cathode consisted of LiFePO₄ powder, acetylene black powder and a certain amount of poly(vinylidene fluoride) (PVDF) as an organic binder in a 70:20:10 (wt%) ratio. These materials were mixed in a ball miller with N-methyl-2-pyrrolidone (NMP) solvent. Then the slurry was coated on the aluminum foil with a thickness of $40\mu m$, which was then heated at 120 °C to remove NMP.

Preparation of electrolyte separator coating:

Electrolyte separator consisted of $Li_{6.25}PTe_{0.125}S_{5.125}Cl_{0.75}$ and PVDF in a 90:10 (wt%) ratio. The mixture was mixed in a ball miller with NMP solvent. Then the slurry was coated on the cathode coating with the thickness of 20µm.

The preparation of all-solid-state cell:

The aluminum foil with cathode and electrolyte coatings were pressed together and then punched into a disc with a diameter of 19 mm, which was then stacked with a lithium plate under pressure to make a CR2025 cell.

Charge and discharge measurements

The charge and discharge experiments of the all-solid-state cells (LiFePO₄ loading: 4.5 mg/cm2) were conducted between 2.5 and 3.8 V. The cycling characteristics at 25°C were examined at a current density of 0.02 mAcm⁻² (0.026C) at the first cycle and then 0.08 mAcm⁻² (0.1C) for later cycles. The electrochemical properties of the cells were determined using a battery-testing instrument (LAND CT2001A), with results plotted in Fig. S2.

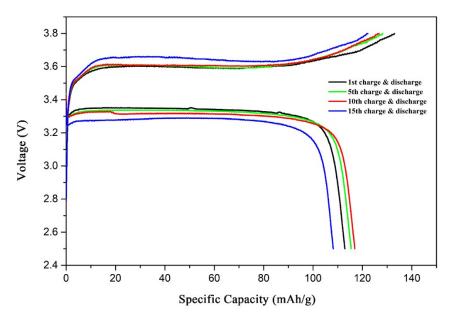


Fig. S2 Charge-discharge performance of LiFePO₄/Li_{6.25}PTe_{0.125}S_{5.125}Cl_{0.75} /Li cell.

Material	Equivalent	Element	Value	σ_{total} at 25°C
	Circuit			(mS cm ⁻¹)
Li ₆ PS ₅ Cl	$R_0(R_1Q_1)W_0$	R ₀	6.2	0.28
		T_{Q1}	3.066×10 ⁻⁶	
		P_{Q1}	0.8969	
		R_1	260	
		R_{W0}	282.4	
		T_{W0}	0.16816	
		\mathbf{P}_{W0}	0.43663	
		R _{total}	266.2	
Li _{6.25} PS _{5.25} Cl _{0.75}	$R_0(R_1Q_1) W_0$	R ₀	14.5	1.03
		T_{Q1}	6.23×10-6	
		P_{Q1}	0.61314	
		R_1	58	
		R_{W0}	19.2	
		T_{W0}	1.476×10 ⁻⁴	
		\mathbf{P}_{W0}	0.27911	
		R _{total}	72.5	
Li _{6.25} PTe _{0.125} S _{5.125} Cl _{0.7}	R_0W_0	R ₀	16.56	4.5
5		R_{W0}	265	
		T_{W0}	0.0025	
		\mathbf{P}_{W0}	0.3504	
		R _{total}	16.56	

Table S1 Key parameters corresponding to each element in the equivalent circuits shown in Fig. 6.

Impedance for constant phase element (Q) and Warburg element (W) are expressed as:

$$\frac{1}{Z_Q = T \times (j\omega)^P}$$

$$Z_{\rm W} = \frac{R \times ctnh[(jT\omega)^{P}]}{(jT\omega)^{P}}$$

Li _{6.25} PS _{5.25} Cl _{0.75}			$Li_{6.25}PTe_{0.125}S_{5.125}Cl_{0.75}$			
Temperature (°C	R _{total}	σ_{total}	Temperature (°C	R _{total}	σ_{total}	
)		(mS cm ⁻¹))		(mS cm ⁻¹)	
			-20	46.3	1.6	
			0	30.5	2.45	
25	72.5	1.03	25	16.56	4.5	
50	56.3	1.33	40	13.91	5.37	
60	45	1.66	60	11.81	6.32	
80	37.5	1.99	80	7.71	9.68	
100	30	2.99	100	6.33	11.7	
			120	4.13	18.0	

 $\textbf{Table S2} \text{ Derived electrical properties for } Li_{6.25}PS_{5.25}Cl_{0.75} \text{ and } Li_{6.25}PTe_{0.125}S_{5.125}Cl_{0.75}.$

VIDEO

The video presented the ionic trajectories of $Li_{6.25}PTeS_{4.25}Cl_{0.75}$ by AIMD at 1000K, in which Li^+ , P^{5+} , Te²⁻, S²⁻, and Cl⁻ ions are indicated by white, red, orange, yellow, and blue balls, correspondingly.