Supporting Information

Ultrahigh energy storage properties with excellent stability in novel NaNbO₃-based lead-free ceramics with A-site vacancy: through Bi₂O₃ substitution strategy

Mingxing Zhou,^{ab} Ruihong Liang,^{*a} Zhiyong Zhou,^a and Xianlin Dong^{*ac}

^a Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Jiading District, Shanghai 201800, P. R. China

^b University of Chinese Academy of Sciences, 19 Yuquan Road, Shijinshan District,

Beijing 100049, P. R. China

^c State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Changning District, Shanghai 200050, P. R. China

*Corresponding Authors

E-mail: liangruihong@mail.sic.ac.cn; xldong@mail.sic.ac.cn

Experimental procedures

The ceramics of the Na_{0.7}Bi_{0.1}NbO₃ were prepared by conventional solid-state reaction with analytical pure starting chemicals of Na₂CO₃ (99.5%), Bi₂O₃ (99.99%), and Nb₂O₅ (99.93%). Raw materials were mixed and ball milled for 24 hours with ethyl alcohol as dispersant. After drying, the mixture was calcined 900 °C for 3 hours in air. The calcined powder was remixed, dried and then pressed into 13-mm diameter pellets under pressure of 120 MPa after adding polyvinyl alcohol (PVA) as organic binders. After burning off PVA at 800 °C for 2 hours in air, sintering was carried out at the temperature of 1150 °C for 2 hours. In order to minimize the evaporation of elemental Na during the process of sintering, the samples were buried into the corresponding calcined powders, and a double-crucible method was applied. The sintered pellets were polished to 0.2 ± 0.02 mm and coated with silver paste (the size of sliver electrode is 4.5 mm in diameter and corresponding area is 15.9 mm²) in order to characterize electrical properties.

The crystal structure was examined by an X-ray diffraction (XRD, D/MAX-2550V; Rigaku, Tokyo, Japan) with a Cu K α radiation. The surface morphology of the sample was investigated using a field emission scanning electron microscope (FESEM, Magellan400, FEI Company). Energy-dispersive X-ray spectroscopy (EDX) was collected from the attachment to the Magellan-400. The temperature dependence of dielectric constant (ε_{T}) and dielectric loss (tan δ) were measured by a precision impedance analyzer (E4980A; Agilent, Palo Alto, CA) with temperature-variable furnace over a temperature range from -50 to 160 °C. Room temperature dielectric constant and tan δ were measured by a precision impedance analyzer (E4990A; Keysight, USA), which frequency range is from 20 Hz to 20 MHz. The DC breakdown strength measurement was performed using a Voltage-withstand testing device at room temperature. The unipolar polarization–electric field (*P*–*E*) hysteresis loops were measured by a commercial ferroelectric analyzer (TF Analyzer 2000, aixACCT, Aachen, Germany). The actual charge-discharge performance of the Na_{0.7}Bio.1NbO₃ ceramics were investigated via a charge-discharge platform with a specially designed, high-speed capacitor discharge resistance, inductance, and capacitance load circuit (RLC) (Fig. S4).

Results and discussion

In order to investigate the relaxor behavior for Na_{0.7}Bi_{0.1}NbO₃ ceramics, the modified Curie-Weiss equation is given in upper-left corner of the Fig. S1. The value of $\gamma = 1$ indicates an ideal ferroelectric with a sharp phase transition, and it representing an obviously diffused transition with large deviation from the Curie-Wesis law when $\gamma =$ 2. The plot of ln($1/\varepsilon - 1/\varepsilon_{max}$) as a function of ln($T-T_{max}$) for Na_{0.7}Bi_{0.1}NbO₃ ceramics at 100 kHz is displayed in Fig. S1 by linear fitting with Curie-Weiss equation to calculate the γ value. The data about 100 kHz were chose here to minimize any space charge contribution to the dielectric constant. The result is 1.86 for Na_{0.7}Bi_{0.1}NbO₃ ceramics, which indicates strong relaxation behavior. This phenomenon is attributed to the induced cation disorder due to the substitution of Bi³⁺ in A-site and formation of cationic vacancy.^[1]

Fig. S1 Plots of $ln(1/\epsilon - 1/\epsilon_{max})$ versus $ln(T-T_m)$ of the Na_{0.7}Bi_{0.1}NbO₃ ceramics.

Fig. S2 Frequency dependence of P_{max} and P_{r} of the Na_{0.7}Bi_{0.1}NbO₃ ceramics.

Fig. S3 Temperature dependence of P_{max} and P_{r} of the Na_{0.7}Bi_{0.1}NbO₃ ceramics.

Fig. S4 Schematic diagram of the charging-discharging cycle measuring system.

Table S1 compares the pulsed charge-discharge performance of the Na_{0.7}Bi_{0.1}NbO₃ ceramics with those of recently reported systems. The ultrahigh values of C_D and P_D of the here present Na_{0.7}Bi_{0.1}NbO₃ ceramics are superior to those of BNT-based ceramics, which currently present the best lead-free material, and obviously larger than those of other commercial lead-based anti-ferroelectric ceramics (mostly $P_D < 10$ MW/cm³, Table S1)^[2-9]

Table S1. Comparison of the charge-discharge properties of the Na_{0.7}Bi_{0.1}NbO₃ ceramics and other reported ceramics.

Composition	$E(kV/mm) t_{0.90}(\mu s)$		$C_{\rm D}({\rm A/cm^2})$	$P_{\rm D}({\rm MW/cm^3})$	Ref
Pb0.90La0.04Ba0.04($Zr_{0.616}Sn_{0.264}Ti_{0.12}$)O3	6.67	~1	~242	~1.95	[7]
$Pb_{0.925}La_{0.05}(Zr_{0.42}Sn_{0.40}Ti_{0.18})O_3$	3.5	~0.065	~183	~3.2	[5]
$Pb_{0.93}La_{0.04}Nb_{0.02}(Zr_{0.42}Sn_{0.40}Ti_{0.18})_{0.98}G$	D_3 4.0	~0.500	~143	~2.9	[6]
$Pb_{0.87}Ba_{0.1}La_{0.2}(Zr_{0.6}Ti_{0.07}Sn_{0.33})O_3$	6.0	/	~223	~6.69	[2]
$Pb_{0.98}La_{0.02}(Zr_{0.35}Sn_{0.55}Ti_{0.10})_{0.995}O_{3}$	8.2	/	~438	~18.0	[9]
BNT-BT-0.32SBT	6.0	~0.675	~400	~12.0	[2]
$Na_{0.7}Bi_{0.1}NbO_3$	10.0	~0.155	~1250	~62.5	This work

References:

- J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yan, *Nano. Energy.*, 2018, 50, 723.
- [2] F. Li, K. Yang, X. Liu, J. Zou, J. Zhai, B. Shen, P. Li, J. Shen, B. Liu, P. Chen, *Scripta. Mater.*, 2017, **141**, 15.
- [3] R. Xu, Z. Xu, Y. Feng, X. Wei, J. Tian, J. Appl. Phys., 2016, 120, 144102.
- [4] R. Xu, Z. Xu, Y. Feng, H. He, J. Tian, K. Yu, Ceram. Int., 2016, 42, 9094.
- [5] H. Zhang, X. Chen, F. Cao, G. Wang, X. Dong, Z. Hu, T. Du, J. Am. Ceram. Soc., 2010, 93, 4015.
- [6] X. Chen, H. Zhang, F. Cao, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, J. Appl. Phys., 2009, 106, 034105.
- [7] R. Xu, Z. Xu, Y. Feng, H. He, J. Tian, D. Huang, J. Am. Ceram. Soc., 2016, 99, 2984.
- [8] C. Xu, Z. Liu, X. Chen, S. Yan, F. Cao, X. Dong, G. Wang, AIP Adv., 2017, 7, 115108.
- [9] C. Xu, Z. Liu, X. Chen, S. Yan, F. Cao, X. Dong, G. Wang, J. Appl. Phys., 2016, 120, 074107.