Insights into the mechanism of enhanced visible-light photocatalytic activity of black phosphorus/BiVO₄ heterostructure: a first-principles study

Yuxuan Chen,^a Tingting Shi,^{*b} Pengyi Liu,^b Xinguo Ma,^c Lingling Shui,^a Chaoqun Shang,^a Zhihong Chen,^d Xin Wang,^{*a} Krzysztof Kempa^{ae} and Guofu Zhou^a

^aNational Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China

^bSiyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China

^cSchool of Science, Hubei University of Technology, Wuhan 430068, China ^dShenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China

^eDepartment of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA

1. The optimized geometry of black phosphorus/BiVO₄ heterostructure are shown in Figure S1. Considering four representational high-symmetric stacking patterns: (1) the underlayer of the phosphorene layer directly aligns with and above the top sites of the top O atom of BiVO₄(001) surface, denoted in the P1 structure (Figure S1 a-b). (2) the upper layer of the phosphorene layer aligns with the top O atom of BiVO₄(001) surface, denoted the P2 structure(Figure S1 b). (3) the middle-point of the top P-P bond of the phosphorene layer aligns with the top O atom of BiVO₄(001) surface, denoted the P3 structure (Figure S1 c). (4) the middle-point of the bottom of P-P bond of the phosphorene layer aligns with and above the hollow sites the top O atom of BiVO₄(001) surface, denoted in the P4 structure (Figure S1 d)

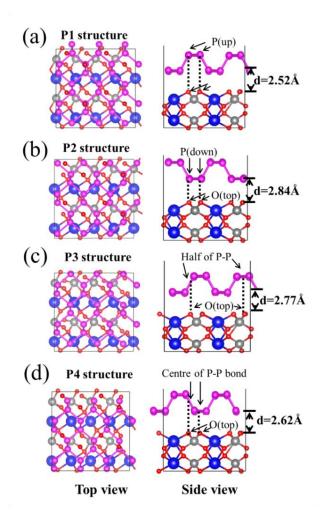


Figure S1: (a) The optimized geometry of black phosphorus/BiVO₄ heterostructure for P1(a), P2(b), P3(c), P4(d) structure, respectively.

2、Relative total energy of the four representational high-symmetric stacking patterns. TheP4 structure demonstrates the lowest energy, which indicate that the P4 structure is mostenergetically favorable.

Figure S2: Relative total energy of the four representational high-symmetric stacking patterns calculated by DFT-D3 and DFT-D2 method, respectively.

Method	BP mono	BP bulk	BiVO4 bulk	BiVO ₄ (001)	BP/BiVO ₄	Source
photoluminescence (optical gap, eV)	2.0	0.35				Buscema ⁴
	2.0-2.1	0.33				Gomez ⁶
	1.45					Wang ⁷
			2.4			Song ⁸
			2.4	2.54		Xi ⁹
electrical (mobility gap, eV)	0.98	0.30				Das ⁵
Computation (band gap, eV)	2.0	0.3				Tran ¹
	1.94	0.43				Liang ²
	1.51	0.36				Qiao ¹²
	1.01	0.31				Liu ³
	1.07	0.43				Gomez ⁶
			2.16			Walsh ¹⁰
			2.09/2.41(HSE)			Wadnerkar ¹¹
Computation (band gap, eV)	0.98	0.15	2.05	2.52	0.76	this work
	1.51	0.50	2.60	2.96	0.89	

Table 1. Band gaps of the referred materials.

Reference:

- 1. Phys. Rev. B, 2014, 89, 235319.
- 2. Nano Lett. 2014, 14, 6400–6406.
- 3. ACS Nano 2014, 8, 4033–4041.
- 4. Nano Lett. 2014, 14, 3347-3352
- 5. Nano Lett. 2014, 14, 5733–5739.
- 6. 2D Materials 1, 2014, 025001
- 7. Nat. Nanotechnol. 2015, 10, 517–521
- 8. J. Mater. Chem. A, 2017, 5, 18831
- 9. Chem. Commun., 2010, 46, 1893–1895
- 10. Chem. Mater. 2009,21, 547-551
- 11. Computational MaterialsScience, 2013, 74, 33-39
- 12. Nature Communications, 2014, 5, 4475