Supporting Information

Fabricating Sandwich-Shelled ZnCdS/ZnO/ZnCdS Dodecahedral

Cages with "One Stone" as Z-scheme Photocatalysts for Highly

Efficient Hydrogen Production

Jianmin Chen,^a Zirong Shen,^a Siming Lv,^a Kui Shen,^a Rongfang Wu,^b Xiao-fang Jiang,^c Ting Fan,^a Junying Chen, *^a Yingwei Li*^a

^aState Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

^bDepartment of Environmental Monitoring, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.

^cSchool of Physics and Telecommunication Engineering, South China Normal University, GuangZhou 510006, China.

*E-mail: chenjunying2010@sina.com.; liyw@scut.edu.cn.

Fig. S1 XRD patterns (a and c) and SEM images (b and d) of ZIF-8 crystals before and after tannic acid etching for 30 min, respectively.

Fig. S2 TEM images of ZIF-8 with etching duration of 0.5 h (a), 1 h (b), 2 h (c), and 3 h (d), respectively, using tannic acid. The inset in (a) shows the corresponding XRD patterns.

Fig. S3 XRD pattern of hollow ZnO cages after calcination at 500 °C for 4 h in the Ar atmosphere. Thermal annealing treatment was used to obtain better XRD patterns for characterizing the material.

Fig. S4 SEM (a and b) and TEM images (c and d) of sandwich-shelled ZnS/ZnO/ZnS cages. The inset in (a) shows the corresponding XRD pattern.

Fig. S5 (a) HAADF-STEM and (b-d) EDX mapping images of sandwich-shelled ZnS/ZnO/ZnS cages.

Fig. S6 TEM images of sandwich-shelled $Zn_{1-x}Cd_xS/ZnO/Zn_{1-x}Cd_xS$ cages: x = 0.1 (a); 0.3 (b); 0.5 (c); 0.7 (d); 0.9 (e); and 1 (f).

Fig. S7 (a) HRTEM image of sandwich-shelled $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages and (b) the particle size distribution of $Zn_{0.5}Cd_{0.5}S$ NPs.

Fig. S8 The pore size distribution for the $Zn_xCd_{1-x}S/ZnO/Zn_xCd_{1-x}S$ cages.

Fig. S9 (a) TEM images of (a) $Zn_{0.5}Cd_{0.5}S$ solid and (b) single-shelled $Zn_{0.5}Cd_{0.5}S$ cages.

Fig. S10 (a) UV-Vis DRS spectra of the as-synthesized sandwich-shelled $Zn_xCd_{1-x}S/ZnO/Zn_xCd_{1-x}S$ cages ($0 \le x \le 1$) with different metal ratios and ZnO hollow cages; (b) The E_g and band positions of ZnO (A), single-shelled $Zn_{0.5}Cd_{0.5}S$ (B), and sandwich-shelled $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ (C).

Fig. S11 The XPS spectrum of the $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages.

Fig. S12 Photocatalytic H₂ evolution on $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages in the presence of sacrificial reagents with various concentrations: A: 0.13 M Na₂S, 0.18 M Na₂SO₃; B: Na₂S, 0.35 M Na₂SO₃; C: 0.50 M Na₂S, 0.70 M Na₂SO₃; D: 0.75 M Na₂S, 1.05 M Na₂SO₃; E: 1.00 M Na₂S, 1.40 M Na₂SO₃.

Fig. S13 (a) Photocatalytic hydrogen evolution curves of the sandwich-shelled $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages prepared at different cation-exchange temperatures in a solution containing 0.75 M Na₂S and 1.05 M Na₂SO₃. (b) Nitrogen adsorption/desorption isotherms recorded at 77 K for $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages prepared at different cation-exchange temperatures.

Fig. 14 Photocatalytic hydrogen evolution curves of sandwich-shelled $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages under different wavelength irradiation.

Fig. S15 XRD patterns of $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages before and after recycle test.

Fig. S16 TEM image of $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages after reaction.

Fig. S17 Photocatalytic hydrogen generation curve as a function of irradiation time in six consecutive cycles catalysed by the $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ cages in the presence of triethanolamine as the hole scavenger.

Fig. S18 Photocatalytic hydrogen evolution curves of sandwich-shelled $Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$ and single shell $Zn_{0.5}Cd_{0.5}S$ cages under visible light irradiation.

Table S1. AAS results of different catalysts and the corresponding BET surface area, pore volume, bandgap energy (E_g), and conduction band (CB) and valence band (VB) potentials.

Catalyst	Zn:Cd	${m S}_{ m BET}{}^a$	Pore	${m E_{f g}}^c$	E _{CB}	$E_{\rm VB}$
	(atomic	(m ² g ⁻¹)	volume ^b	(eV)	(eV)	(eV)
	ratio)		(cm ³ g ⁻¹)			
ZnS/ZnO/ZnS	-	17	0.024	2.94	-0.71	2.23
$Zn_{0.9}Cd_{0.1}S/ZnO/Zn_{0.9}Cd_{0.1}S$	0.91 : 0.09	48	0.083	2.59	-0.54	2.05
$Zn_{0.7}Cd_{0.3}S/ZnO/Zn_{0.7}Cd_{0.3}S$	0.72 : 0.28	102	0.154	2.49	-0.51	1.98
$Zn_{0.5}Cd_{0.5}S/ZnO/Zn_{0.5}Cd_{0.5}S$	0.51 : 0.49	176	0.276	2.44	-0.50	1.94
$Zn_{0.3}Cd_{0.7}S/ZnO/Zn_{0.3}Cd_{0.7}S$	0.31 : 0.69	132	0.193	2.42	-0.51	1.91
$Zn_{0.1}Cd_{0.9}S/ZnO/Zn_{0.1}Cd_{0.9}S$	0.12 : 0.88	96	0.167	2.40	-0.51	1.89
CdS/ZnO/CdS	-	58	0.129	2.38	-0.50	1.88
Single-shelled ZnCdS	0.53 : 0.47	102	0.090	2.42	-0.49	1.93
ZnO	-	-	-	2.87	-0.14	2.73

^{*a*} BET surface area was calculated by using the Brunauer-Emmett-Teller equation. ^{*b*} Total pore volume was determined by using the adsorption branch of the N₂ isotherm at $P/P_0 = 0.995$. ^{*c*} Bandgap energy (E_g) was calculated by the Kubelka-Munk method.

Catalyst	Co-catalyst	Light source	TOF	Ref.
			$(mmol_{H2} h^{-1} g^{-1})$	
ZnO/Pt/Cd _{0.8} Zn _{0.2} S	Pt	450 W Xe	31.20	54
ZnCdS/ZnO/ZnCdS	-	300 W Xe	28.60	This work
ZnO-CdS@Cd	Pt	300 W Xe	19.20	27
$Zn_{0.5}Cd_{0.5}S$	CoP	AM 1.5G	12.20	55
TiO_2	Pt	AM 1.5G	10.64	56
CdS/ZnO core/shell	-	300 W Xe	9.62	57
Pt-Zn ₃ P ₂ -CoP	Pt	300 W Xe	9.15	58
NiS/Zn _{0.5} Cd _{0.5} S/RGO	-	AM 1.5G	7.51	12
ZnO-CdS	RuO	300 W Xe	6.18	59
ZnO-CdS/RGO	Pt	300 W Xe	5.10	25
$ZnS/graphene/MoS_2$	RGO, MoS ₂	300 W Xe	2.26	23
MoS ₂ /TiO ₂	MoS_2	300 W Xe	2.15	60
TiO ₂ -MoS ₂ -graphene	-	350 W Xe	2.07	61
RGO-Zn _{0.8} Cd _{0.2} S	RGO	AM 1.5G	1.82	10
ZnO/CdS	Pt	300 W Xe	1.81	62
Pt1-Au2/TiO2	-	AM 1.5G	1.23	63
Pt@UiO-NH ₂ -66	Pt	300 W Xe	0.35	64
ZnO/Zn _x Cd _{1-x} Te	-	300 W Xe	0.27	20

Table S2. Comparison of the H_2 -generation rates for various photocatalysts.