Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

for

Hydrothermally-processed CuCrO₂ nanoparticles as inorganic hole transporting material for low-cost perovskite solar cells with superior stability

by

Seckin Akin^{a,b,c,d}, Yuhang Liu^c, M. Ibrahim Dar^c, Shaik M. Zakeeruddin^c, Michael Grätzel^c, Servet Turan^d, Savas Sonmezoglu^{a,b,*}

^aNanotechnology R&D Laboratory, Karamanoglu Mehmetbey University, Karaman, Turkey ^bDepartment of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey ^cLaboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland

^dDepartment of Materials Science and Engineering, Eskisehir Technical University, Eskisehir, Turkey

Figure S1. Schematic illustration of PSC formation.

Figure S2. (a) XPS survey spectra of the CCO sample. (b)-(d) High resolution XPS spectra of Cu 2p, Cr 2p and O 1s, respectively.

Figure S3. (a) VBM (b) UPS spectrum (c) Secondary electron cut-off of CCO NPs deposited on a substrate by spin-coating. (d) The Tauc plot of CCO NPs. (e) The energy diagram of CCO. The valence band energy (E_{VB}) of the CCO was determined according to the following equation: $E_{VB} = -21.22 + (E_{cut-off} - E_{onset})$, where E_{onset} is the onset of photoemission in the low binding energy region, $E_{cut-off}$ is the inelastic cut-off binding energy and 21.22 eV is the energy of the light source (He 1 α).

Figure S4. Top-view FE-SEM images of the CCO HTM deposited perovskite films as a function of solution concentration (a) 1 mg/ml and (b) 20 mg/ml.

Figure S5. Nyquist plots ($V_{app} = 0 \text{ mV}$) of the devices with CCO and Spiro-OMeTAD HTMs. The inset shows the equivalent circuit model employed for analysis.

Table S1. Carrier lifetimes for perovskite and perovskite/HTM samples.

Samples	τ_1 (ns)	τ_2 (ns)	A ₁	A_2	τ _{ave} (ns)
Perovskite	3.97	79.07	0.20	0.75	78.08
Perovskite/Spiro-OMeTAD	0.91	31.64	0.74	0.20	28.68
Perovskite/CCO	0.93	20.36	0.78	0.14	16.42

Table S2. The photovoltaic parameters of CCO HTM based PSCs as a function of CCO concentration.

Concentrations	J _{sc}	Voc	ББ	PCE
(mg/ml)	(mA.cm ⁻²)	(V)	FF	(%)
	19.83	0.883	0.46	8.08
1	17.63	0.899	0.41	6.42
	18.99	0.905	0.45	7.75
	22.22	1.002	0.54	12.04
5	21.19	0.995	0.54	11.38
	21.88	1.001	0.58	12.77
	22.79	1.038	0.69	16.34
10	23.02	1.009	0.69	16.05
	23.19	1.028	0.67	15.97
	20.46	0.999	0.62	12.53
20	21.09	1.007	0.67	14.22
	21.10	0.995	0.66	13.91

HTMs	Materials	Required	Material Cost	Obtained	Number of	Cost per Device
		Amount ^a	(€) ^b	Amount ^c	Devices ^d	(€)
Spiro-OMeTAD	Spiro-OMeTAD	90 mg	34.15	l ml	25	1.39
	CB	1 ml	0.24			
	Li-TFSI in ACN	20.6 µl	0.09			
	4-tBp	35.6 µl	0.12			
	TOTAL		34.60 €			
CCO	Cu(NO ₃) ₂	4.75 g	2.41			
	Cr(NO ₃) ₃	8.08 g	8.65			
	NaOH	8 g	0.33	1.8 g	4500	0.004
	DIW	100 ml	0.20			
	HCl	50 ml	1.92			
	Ethanol	50 ml	3.83			
	TOTAL		17.34€			

Table S3. Survey of estimated cost for Spiro-OMeTAD and CCO HTMs. This cost estimation only compares the HTMs without considering other outgoings such as profit, labor cost, energy consumption, etc.

a: The used amount for each synthesis.

b: The estimated material cost taken from https://www.sigmaaldrich.com.

c: The obtained amount of product for each synthesis: 1 ml of Spiro-OMeTAD solution and ~1.8 g of CCO powder. Therefore, ~180 ml of CCO solution can be obtained for the best concentration of CCO (10 mg/ml). d: The amount of solution required to deposit one HTM layer is 40 μ l. Therefore, 1 ml / 40 μ l = 25 Spiro-OMeTAD and 180

ml / 40 μ l = 4500 CCO hole transport layers can be deposited.