Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting information

Shape and size controlled synthesis of Cu nanoparticles-wrapped on RGO nanosheet catalyst and their outstanding stability and catalytic performance in the hydrogenation reaction of dimethyl oxalate

Mohamed Abbas^{a,b}, Zheng Chen^{a,c}, Jiangang Chen^{a,*}

^{*c.*} University of Chinese Academy of Sciences, Beijing, China.

E-mail: mohamed_abbas83@yahoo.com, mohamed@dgist.ac.kr, chenjg@sxicc.ac.cn

^{*a.*} State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.

^{b.} Ceramics Department, National Research Centre, El-Bohouth Str., 12622 Cairo, Egypt.

Synthesis of GO NSs using modified Hummer method

Modified Hummers method was utilized to synthesize graphene oxide from the oxidation of high purity graphite powder. 96.0 ml Conc H₂SO₄ was added gradually to a mixture of 2 gm purified graphite flakes and 1 gm of sodium nitrate with keeping in ice bath. After around 30 min of vigorous magnetic stirring, 6 gm of KMnO₄ was added gradually and very carefully and stirred for 2 h under 20 °C as maintained by using ice bath. The mixture was placed in an oil bath whose temperature was maintained around 35 °C by a hot plate and magnetically stirred for 20 h after which the mixture turned into heavy brownish pasty color. Then, 150 ml di- water was added gradually within vigorous stirring. When the temperature increased with huge toxic gas bubbling, the more di-water was added until the solution diluted with 240 ml. When the diluted suspension color changed into brilliant yellow, 5 ml of H_2O_2 as strong oxidizing agent was added to it. After 2 h of continuous stirring, the mixture was filtered and washed by rinsing and centrifugation with mixture of 10% HCl. Then ultra-pure ethanol and di-water was added for several times to increase the pH value towards neutral. The resulting filtered mixturewas dried in oven for 24 h approximately at temperature 70 °C, and finally, solid GO powder was obtained.

Type of Catalyst	S _{BET} (m2/g)	Pore	Cu ⁺ /(Cu ⁺ +Cu ⁰) %	TOF value
		diamete		(h ⁻¹)
		r (nm)		
Cu/RGO (US)	43.8	8.1	27	4.8
Cu/RGO (NH ₄ OH)	21.9	7.3	28.3	15.3
Cu/RGO (US/NH ₄ OH)	37.4	18.4	34	17.1
Cu/RGO (10 wt%)	49.6	8.2	26.3	12.6
Cu/RGO (25 wt%)	37.4	18.4	34	17.1
Cu/RGO (45 wt%)	37	19.1	26	14

Table S1 Physico-chemical properties of the prepared catalysts

Ref	Reaction temperature (°C)	H2/DMO Ratio mol mol ⁻¹	
1	200	80	
4	210	300	
12	80	17.5	
13	220	110	
32	220	80	
38	180	150	
39	210	200	
This work	210	200	

Table S2 Reaction condition for the catalysts used in the comparison of the catalytic activity (Related to Table. 1)

Fig. S1 TEM images for the Cu/RGO catalyst (US)

Fig. S2 XPS survey and analogues high resolution images of Cu 2p for Cu/RGO catalysts (a,b) synthesized in different reaction condition and (b) synthesized in presence of ultrasound and ammonia within different Cu wt% loading.

Fig. S3 XPS and HR-XPS to as-prepared, reduced and spent Cu/RGO catalyst to show the shift in the bending Energy values after reducing and used catalyst.

Fig. S4 H2-TPR for Cu/RGO catalysts synthesized (a) in different reaction condition and (b) synthesized in presence of ultrasound and ammonia within different Cu wt% loading.

Fig. S5 MG and DMO conversion ratio for the spent Cu/RGO catalyst after 300 h of reaction time.

Fig. S6 TEM and HRTEM image for the spent Cu/RGO catalyst