Supporting Information

Self-propagation High-temperature Synthesis of Half-Heusler

Thermoelectric Materials: Reaction Mechanism and Applicability

Yunfei Xing ^{ab}, Ruiheng Liu ^{*a}, Yi-Yang Sun ^a, Fan Chen ^{ab}, Kunpeng Zhao ^a, Tiejun Zhu ^c, Shengqiang Bai ^{*a} and Lidong Chen ^{ad}

Sciences, Shanghai 200050, China

^{b.} University of Chinese Academy of Sciences, Beijing 100049, China

^c State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

^{d.} CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China

ZrNiSn_{1-x}Sb_x

Fig. S1 (a) XRD patterns of the products after SHS-SPS of $ZrNiSn_{1-x}Sb_x$ (x = 0.01, 0.02, 0.03, 0.04) (b) element distribution of the polished surface of $ZrNiSn_{0.99}Sb_{0.01}$ after SHS-SPS

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of

Fig. S2 Thermoelectric performance of SHS-prepared $ZrNiSn_{1-x}Sb_x$ (x = 0.01, 0.02, 0.03, 0.04) (a) electrical conductivity (b) Seebeck coefficient (c) thermal conductivity (d) zT values. The red line represents the data from Ref [S1].

Fig. S3 (a) Hall carrier concentration (b) Hall mobility of $ZrNiSn_{1-x}Sb_x$ (x = 0.01, 0.02, 0.03, 0.04)

Fig. S4 The Seebeck coefficient of $ZrNiSn_{1-x}Sb_x$ and some reported data¹⁻⁴ at 300 K as a function of Hall carrier concentration, the dash line are calculated by the single parabolic band model with $m^* = 3.1 m_e$

Fig. S5 (a) XRD patterns of the products after SHS-SPS of $ZrCoSb_{1-x}Sn_x$ (x = 0.1, 0.2, 0.3) (b) element distribution of the polished surface of $ZrCoSb_{0.7}Sb_{0.3}$ after SHS-SPS

Fig. S6 Thermoelectric performance of SHS-prepared $ZrCoSb_{1-x}Sn_x$ (x = 0.1, 0.2, 0.3) (a) electrical conductivity (b) Seebeck coefficient (c) thermal conductivity (d) zT values. The blue line represents the data from Ref [S5]

TiNiSn_{1-x}Sb_x

Fig. S7 (a) XRD patterns of the products after SHS-SPS of TiNiSn_{1-x}Sb_x (x = 0, 0.01, 0.02, 0.03) (b) element distribution of the polished surface of TiNiSn_{0.99}Sb_{0.01} after SHS-SPS

Fig. S8. Thermoelectric performance of SHS-prepared TiNiSn_{1-x}Sb_x (x = 0, 0.01, 0.02, 0.03) (a) electrical conductivity (b) Seebeck coefficient (c) thermal conductivity (d) zT values. The red line represents the data from Ref [S6].

S1. H. H. Xie, H. Wang, C. G. Fu, Y. T. Liu, G. J. Snyder, X. B. Zhao and T. J. Zhu, Sci Rep-Uk, 2014, 4.

S2. P. F. Qiu, J. Yang, X. Y. Huang, X. H. Chen and L. D. Chen, Applied Physics Letters, 2010, 96.

S3. C. Uher, J. Yang, S. Hu, D. T. Morelli and G. P. Meisner, Physical Review B, 1999, 59, 8615-8621.

S4. H. H. Xie, H. Wang, Y. Z. Pei, C. G. Fu, X. H. Liu, G. J. Snyder, X. B. Zhao and T. J. Zhu, Adv Funct Mater, 2013, 23, 5123-5130.

S5. B. Yuan, B. Wang, L. H. Huang, X. B. Lei, L. D. Zhao, C. Wang and Q. Y. Zhang, Journal of Electronic Materials, 2017, 46, 3076-3082.

S6. C. S. Birkel, W. G. Zeier, J. E. Douglas, B. R. Lettiere, C. E. Mills, G. Seward, A. Birkel, M. L. Snedaker, Y. C. Zhang, G. J. Snyder, T. M. Pollock, R. Seshadri and G. D. Stucky, Chemistry of Materials, 2012, 24, 2558-2565.