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COMPUTATIONAL DETAILS

In this work, all structural relaxations, electronic struc-
ture and climbing-image nudged-elastic-bands (CI-NEB)
calculations were performed with open source plane wave
code Quantum-ESPRESSO[1, 2] package. For 3% and
6% Mo-doped BiVO4 and pristine BiVO4 with the equiv-
alent electron polaron concentrations we have used a 96-
atom (6%) and a 192-atom (3%) supercell respectively.
DFT+U calculations were performed using Perdew-
Burke-Ernzerhof (PBE) [3, 4] exchange-correlation func-
tional,with U(V)=2.7 eV, U(Cr)=2.8 eV, U(W)=2.1 eV
and U(Mo)=2.3 eV according to Ref. 5, 6. We used
GBRV ultrasoft pseudopotentials[7] with a wavefunction
plane wave cutoff of 50Ry and a charge density plane
wave cutoff of 300Ry, and 2x2x2 k-point sampling. Hy-
brid calculations were performed using PBE0 and dielec-
tric dependent hybrid functionals with an exact exchange
fraction α = 0.1449 that is determined by the inverse of
high-frequency dielectric constant of BiVO4 α = 1/ε∞,
ONCV norm-conserving pseudopotentials[8, 9], a wave-
function plane wave cutoff of 70 Ry, a charge density
plane wave cutoff of 280 Ry and 1x1x1 k-point mesh.
Both cell size and internal geometry were fully optimized
for pristine BiVO4 and only the internal geometry was
further optimized for doped BiVO4.

Constraint DFT calculations (CDFT) were performed
with a recent implementation generalized for solids[10].
Within CDFT, an additional external potential is added
to the Kohn-Sham equation, and its strength is self-
consistently determined to make a specific number of
electrons localied on a given site. CDFT can directly
yield charge densities and reorganization energies of dia-
batic states. The electron coupling matrix element Hab is
determined from overlaps of two Slater determinants con-
structed from Kohn-Sham wavefunctions of two diabatic
states. CDFT calculations were performed in a 192-atom
supercell, ONCV norm-conserving pseudopotentials, a
wavefunction plane wave cutoff of 70Ry and 1x1x1 k-
point mesh, with PBE, DFT+U and hybrid functionals.

Phonons at Γ-point were computed by VASP[11–14]
with PAW[15, 16] and Phonopy[17] in a 96-atoms super-
cell using DFT+U . A kinetic energy cutoff of 400 eV
and 2x2x2 k-point mesh were used in the geometry opti-
mization and phonon calculations. The transition state
geometry for phonon calculations specifically was opti-
mized by CI-NEB followed by a dimer method by VASP

and transition state search tool (VTST)[18–21].

KINETIC MONTE CARLO SIMULATION FROM
HOPPING RATES TO MOBILITY

We used kinetic Monte Carlo (kMC) simulation to pre-
dict the mobility with polaron hopping transfer rates be-
tween sites in BiVO4. The kMC is a statistical method
of a random process on average by means of multiple
simulations. The process can be described as below[22]:

1. Set up a lattice model with multiple sites represent
different V atoms. A selected group of hopping
between sites are considered in the simulation, for
example, only first nearest neighbor hopping, or
both first (1NN) and second nearest (2NN) neigh-
bor hopping.

2. Calculate all non-equivalent hopping rates (be-
tween 1NN) kab from the method described in the
main text with the Landau-Zener theory at a spe-
cific temperature T , where a, b are sites.

3. Choose an arbitrary site as the starting point,
marked as a.

4. Randomly choose the next site b to hop to: The
probability to hop to the neighbor bi is pi =
kabi/

∑
j kabj . A random number r uniformed dis-

tributed on [0, 1) is generated. The site bi is chosen

if
∑i
j=1 pj ≤ r <

∑i+1
j=1 pj .

5. A random number r′ uniformed distributed on [0, 1)
is generated, and the time cost ∆t in this step is
∆t = − ln(r′)/

∑
i kabi

6. Repeat the above two steps, and record the squared
displacement L2 and time per S steps until sam-
pled M times, where S and M should be suffi-
ciently large. The total simulation time is given
by MS 〈∆t〉.

7. Repeat step 3 to 6 forN times, and take the average
of these L2 − t curve (Each consists of M points).
This would give an approximately linear curve from
which we can fit the diffusion coefficient D.
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FIG. S1. The averaged square displacement over time of
N=100, 800 and 12800 samplings in pristine BiVO4.

8. Repeat the above steps for K times and get a set
of diffusion coefficient Di(i = 1, 2, · · ·K) and fol-
lowing mobility µi(i = 1, 2, · · ·K). We can esti-
mate the error of the mobility from this dataset as
max(µi)−min(µi).

Here we listed results from pristine BiVO4 to illus-
trate the process. Fig. S1 shows the average of square
displacement over time of N samplings, with S = 10 and
M = 100. From Fig. S1 we can see only with enough
simulations there is a good linear relationship between L2

and t. Fig. S2 shows the mobility obtained from different
number of samplings N , and for each N the simulation is
repeated K = 16 times. It is clear that the instability de-
creases with increasing N . The error of mobility is shown
in Fig. S3, which is smaller than 2% when N = 12800,
which confirms the reliability of this simulation.

ANISOTROPIC FIRST NEAREST NEIGHBOR
HOPPING IN BIVO4

Here we will demonstrate why the first nearest neigh-
bor hopping in BiVO4 is anisotropic.

In a periodic system with only one equivalent site that
has 4 equivalent nearest neighbors as Fig.S4, each hop-
ping always gives the same square displacement L2

i (i =
x, y, z):

L2
x = a2/2 (1)

L2
y = b2/2 (2)

L2
z = c2/2 (3)

FIG. S2. The mobility v.s. number of samplings N in pristine
BiVO4.

FIG. S3. The error of the mobility estimated from
max({µi}) − min({µi}) with given number of samplings N
in pristine BiVO4.

Because the diffusion coefficient along each direction
follows Di = L2

i /2∆t, only when a = b = c we have
Dx = Dy = Dz. In BiVO4, a ≈ b and c/a = 1.6, this
gives the mobility a/c ratio 0.38 in the main text.
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FIG. S4. A site with four equivalent nearest neighbors

EFFECTIVE FREQUENCY CALCULATION

The effective frequency in the Landau-Zener theory
can be computed from partition functions:

νeff =
kBT

h

ZTS

ZGS

=
kBT

h

∏3N−6
i

[
2 sinh

(
hνGS

i

2kBT

)]
∏3N−7
i

[
2 sinh

(
hνTS

i

2kBT

)] (4)

At the high temperature limit, kBT � hνi, we have

2 sinh

(
hν

2kBT

)
→ hν

kBT
(5)

and
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kBT
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i

2kBT
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(6)

The results are summarized in Table I. We can see
the high temperature limit (Eq. 6) underestimates the
effective frequency by half at 300K compared with the
one obtained from partition functions (Eq. 4).

TABLE I. Effective frequencies computed with different ap-
proaches (Eq. 4 and Eq. 6) at 300K

Method 1NN hνeff (meV) 2NN hνeff (meV)
Partition function 267 285

High temperature limit 132 138

FIG. S5. Total and projected density of states of pristine (top
left), Cr(top right), Mo (bottom left) and W (bottom right)
doped BiVO4. The total DOS is 0.02x for visualization. V(d)
is the site where an electron polaron is localized at except that
in the Cr-doped case. In Cr-doped BiVO4 there is no polaron
localized at V and the PDOS of all V are very similar, so an
arbitrary one is shown here.

PROJECTED DENSITY OF STATES OF
PRISTINE, CR, MO AND W DOPED BIVO4

The total and projected density of states are shown in
Fig. S5. The projected density of states clearly show that
in the pristine, Mo-doped and W-doped BiVO4, there is
a filled gap state due to an excess electron localized at
one V atom that corresponds to the polaron. However,
in Cr-doped BiVO4, there are two gap states localized at
Cr instead of any V atom, which means the electron is
trapped at the Cr site in this system.
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FIG. S6. Comparison of the obtained pathway of nearest
neighbor polaron hopping N in pristine BiVO4. from CI-NEB
calculations of different number of images.

CI-NEB CALCULATIONS OF BARRIERS

All CI-NEB calculations are done with 7 images be-
tween the initial and final state. From Figure. S6 we can
see the difference between the barrier in CI-NEB with 7
images and that with 13 images is smaller than 3meV.

The local structures of two VO4 tetrahedra where the
polaron hopping happens are shown in Figure. S7. The
V-O bond lnegths in two VO4 are the same at transition
state and have significant difference when the polaron is
localized on one of them.
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