Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Adjusting the Yolk-shell Structure of Carbon Spheres to

Boost the Capacitive K⁺ Storage Ability

Hehe Zhang,^a Hanna He,^a Jingyi Luan,^a Xiaobing Huang,^b Yougen Tang^a and Haiyan Wang^{*a}

 ^aHunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
^bCollege of Chemistry and Chemical Engineering, Hunan University of Arts and Science, Changde, 415000, P.R. China

*Corresponding author: Haiyan Wang

Tel: +86 0731 8830886; Fax: +86 0731 8879616.

E-mail: wanghy419@csu.edu.cn (H. Wang)

Figure S1 EDX spectra and the element composition of the yolk of SiO_2/C nanospheres: (a) $SiO_2/C-1$: 0.08 mmol L-1 TEOS; (b): $SiO_2/C-2$: 0.16 mmol L-1 TEOS and (c): $SiO_2/C-3$: 0.24 mmol L-1 TEOS.

Figure S2 TEM images and elemental mapping images of (a) $SiO_2/C-1$, (b) $SiO_2/C-2$ and (c) $SiO_2/C-3$.

Figure S3 EDX spectra and the element composition of the inner and outer shell of $SiO_2/C-3$.

Figure S4 (a-c) SEM and (d-i) TEM images of the SiO₂ spheres: (a, d and g) SiO₂-1: 0.08 mmol L⁻¹ TEOS; (b, e and h): SiO₂-2: 0.16 mmol L⁻¹ TEOS and (c, f and i): SiO₂-3: 0.24 mmol L⁻¹ TEOS.

Figure S5 Element maps of (a) CS, (b) HYCS-1 and (c) HYCS-2.

		-		
Materials	Atomic % (XPS)			
	С	Ν	0	
CS	93.56	1.58	4.86	
HYCS-1	94.29	1.65	4.05	
HYCS-2	93.46	1.57	4.98	
HYCS-3	93.73	1.64	4.63	

Table S1. Atomic percentage of different samples calculated from the results of XPS

Figure S6 N₂ adsorption/desorption isotherm and pore size distribution of: (a, b) CS; (c, d) HYCS-1 and (e, f) HYCS-2.

Figure S7 Charge-discharge curves at 50 mA g⁻¹ of (a) CS, (b) HYCS-1, (c) HYCS-2 and (d) HYCS-3.

Figure S8 CV curves at different scan rates between 0.001 and 3.0 V for (a, b) CS, (d, e) HYCS-1 and (g, h) HYCS-2. The log(*v*)–log(*i*) profiles of (c) CS, (f) HYCS-1 and (i) HYCS-2.

Figure S9 Separation of the capacitive and diffusion-controlled charges at 1 mV s⁻¹ of (a) CS, (b) HYCS-1 and (c) HYCS-2.

Negative electrode materials	Cyclability (mA h g ⁻¹)	Rate performance (mA g ⁻¹)	Reference	
Constitu	100 at 140 mA g ⁻¹ after 263 at 28 mA g ⁻¹ ; 172 at 140 mA g ⁻¹ 50 cycles 80 at 280 mA g ⁻¹		1	
Graphite				
TT 1 1 . 1	216 at 28 mA g ⁻¹ after	262 at 28 mA g ⁻¹ ; 205 at 280 mA g ⁻¹ ;	2	
Hard carbon microspheres	100 cycles	136 at 1400 mA g ⁻¹	2	
	200 at 280 mA g ⁻¹ after	230 at 140 mA g ⁻¹ ; 190 at 190 mA g ⁻¹ ;		
Hard-soft composite carbon	200 cycles	81 at 2800 mA g ⁻¹	5	
	211 at 20 mA g ⁻¹ after	270 at 20 mA g ⁻¹ ; 190 at 2000 mA g ⁻¹ ;		
Porous carbon nanofiber	1200 cycles	140 at 5000 mA g ⁻¹	т	
	180 at 500 mA g ⁻¹ after	200 at 34 mA g ⁻¹ ; 190 at 202 mA g ⁻¹ ;	5	
N-doped carbon microsphere	4000 cycles	156 at 5040 mA g ⁻¹		
	130 at 1050 mA g ⁻¹	315 at 50 mA g ⁻¹ ; 230 at 200 mA g ⁻¹ ;	6	
N/O dual-doped carbon	after 1100 cycles	118 at 3000 mA g ⁻¹		
	212 at 560 mA g ⁻¹ after	298 at 28 mA g ⁻¹ ; 210 at 280 mA g ⁻¹ ;	mA g ⁻¹ ; 210 at 280 mA g ⁻¹ ;	
Hollow carbon nanospheres	100 cycles	155 at 1400 mA g ⁻¹	1	
	100 at 200 mA g ⁻¹ after	209 at 100 mA g ⁻¹ ; 159 at 200 mA g ⁻¹ ;		
Activated carbon	100 cycles	30 at 1000 mA g ⁻¹	0	
N dan ed earle an annetel e	236 at 20 mA g ⁻¹ after	338 at 10 mA g ⁻¹ ; 98 at 600 mA g ⁻¹ ; 75	9	
N-doped carbon nanotube	100 cycles	at 1000 mA g ⁻¹		
S/O codoped porous hard carbon	226.6 at 50 mA g ⁻¹ after	230 at 50 mA g ⁻¹ ; 213 at 200 mA g ⁻¹ ;	10	
microspheres	100 cycles	158 at 1000 mA g ⁻¹	10	
highly N-doped carbon	248 at 25 mA g ⁻¹	238 at 100 mA g ⁻¹ ; 217 at 200 mA g ⁻¹ ;	11	
nanofibers	after 100 cycles	101 at 20 A g ⁻¹		
N-doped hierarchical porous 218 at 200 mA g ⁻¹ after 3		314 at 50 mA g ⁻¹ ; 227 at 200 mA g ⁻¹ ;	this most.	
yolk-shell spheres	500 cycles	121 at 5000 mA g ⁻¹	this work	

Table S2.	A comparison of potassium s	storage performance	for several a	reported carbon
materials				

Supplementary References

- 1. Z. Jian, W. Luo and X. Ji, J. Am. Chem. Soc., 2017, 137, 11566.
- 2. Z. Jian, Z. Xing, C. Bommier, Z. Li and X. Ji, Adv. Energy Mater., 2016, 6, 1501874.
- Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su and X. Ji, *Adv. Funct. Mater.*, 2017, 27, 1700324.
- 4. X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang and Y. Xu, J. Mater. Chem. A, 2017, 5.
- C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai, L. Peng, Y. Huang, J. Jiang, Y. Huang and L. Zhang, *Energy Storage Mater.*, 2017, 8, 161-168.
- 6. J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng and S. Xiong, Adv. Mater., 2018, 30, 1700104.
- D. S. Bin, Z. X. Chi, Y. Li, K. Zhang, X. Yang, Y. G. Sun, J. Y. Piao, A. M. Cao and L. J. Wan, J. Am. Chem. Soc., 2017, 139, 13492.
- 8. Z. Tai, Q. Zhang, Y. Liu, H. Liu and S. Dou, Carbon, 2017.
- 9. X. Zhao, Y. Tang, C. Ni, J. Wang, A. Star and Y. Xu, ACS Appl. Energy Mater., 2018, 1, 1703-1707.
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo and H. Yang, *Adv. Energy Mater.*, 2018, 1800171.
- 11. Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu and Y. Lei, Nat. Commun., 2018, 9.