Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Facile Preparation of Ultrafine Ti₄O₇ Nanoparticles-embedded Porous Carbon with High-

Areal-Sulfur Loading for Lithium Sulfur Batteries

Ao Chen, Weifang Liu, Hang Hu, Tao Chen, Baolong Ling, Kaiyu Liu*

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Hunan Provincial Key Laboratory of Chemical Power Source, Changsha 410083, China

* corresponding author, E-mail: kaiyuliu309@163.com

Fig. S1 Dispersion experiment (a) The mixed solution of silica colloidal solution, TiO_2 nanoparticles and SDS. (b) Deionized water with SDS and TiO_2 nanoparticles. (c) Silica colloidal solution with TiO_2 nanoparticles. (d) Pure deionized water with TiO_2 nanoparticles.

Fig. S2. The SEM image of as-prepared $PC@Ti_4O_7$.

Fig. S3. The SEM images of broken large shelled pores.

Fig. S4. The SEM images of four control samples. (a) PC@Ti₄O₇-1, (b-c) PC@Ti₄O₇-2, (e) PC@TiO₂, (f)

PC.

Fig. S5. The TEM image of carbon spheres in $PC@Ti_4O_7-2$.

Fig. S6. The SEM images of as-prepared electrode films. (a) PC@Ti₄O₇-S electrode, (b) PC@Ti₄O₇-1-S electrode, (c) PC@Ti₄O₇-2-S electrode, (d) PC@TiO₂-S electrode, (e) PC-S electrode.

Fig. S7. The XRD patterns of PC@Ti₄O₇-1, PC@Ti₄O₇-2 and PC@TiO₂.

Fig. S8. N₂-sorption isotherms and pore-size distribution of the PC@Ti₄O₇ and PC@Ti₄O₇-1 composites.

Fig. S9. Thermogravimetric analysis of Ti_4O_7 and elemental sulfur.

Fig. S10. The galvanostatic profiles of other four control samples at 1 C.

Fig. S11. (a) The thickness of high sulfur loading electrodes. (b-c) SEM images of thick $PC@Ti_4O_7-S$

electrodes.

Fig. S12. The galvanostatic charge-discharge curves of PC@Ti₄O₇-S cathodes with 10.6 and 15.6 mg cm⁻² sulfur after different cycles.

Fig. S13. Equivalent circuit modal of the Nyquist plots.

	Cathode	$R_e(\Omega)$	$R_s(\Omega)$	$R_{ct}(\Omega)$	Warburg coefficient
Before cycles	PC@Ti ₄ O ₇ -S	1.8	31.3	6.3	14.3
	PC-S	2.6	52.7	24.9	22.2
After cycles	PC@Ti ₄ O ₇ -S	7.9	12.5	2.2	8.0
	PC-S	2.9	25.1	6.4	10.3

Table S1. EIS test results of $PC@Ti_4O_7$ -S and PC-S cathode before and after cycles.

Fig. S14. Visualized adsorption of Li_2S_4 on porous carbon and $PC@Ti_4O_7$ with the same amount.

Fig. S15. The long-term cycled $PC@Ti_4O_7$ -S and PC-S cathodes soaked in mixed DOL/DME solvent.

Fig. S16. (a) The SEM images of fresh PC@Ti₄O₇-S cathode. (b) The cycled PC@Ti₄O₇-S cathode.