Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary material

Synthesis of N-doping carbon nanosheets with controllable porosity

derived from bio-oil for high-performance supercapacitors

Qun Wang, Bin Qin, Xiaohua Zhang, Xiaoling Xie, Li'e Jin, Qing Cao* College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China.

Content:

.

Fig. S1 Cyclic voltammetry curves for ABF-9%M with the scan rate of 50 mV s⁻¹

(a) and 10 mV s⁻¹ using 2M KCl and 6M KOH as the electrolyte.

Fig. S2 Plot of Bode phase angle with frequency.

 Table S1 Comparison of the specific capacitance of ABF-9%M with reported

 biomass-derived carbon materials previously.

 Table S2. Equivalent circuit parameters of the ABFs.

* Corresponding author. E-mail address: qcao2000@163.com (Q. Cao).

Fig. S1 Cyclic voltammetry curves for ABF-9%M with the scan rate of 50 mV s⁻¹ (a) and 10 mV s⁻¹ using 2M KCl and 6M KOH as the electrolyte.

Fig. S2 Plot of Bode phase angle with frequency.

Precursors	$S_{ m BET}$	C/S	С	Electrolyte	Ref.
	$(m^2 g^{-1})$		(F g ⁻¹)		
D 1	1500	0 7 4 1h			
Bamboo	1732	0.5 A g^{-10}	222	6 M KOH	1
Bark	1721	0.5 A g ^{-1b}	206	$1 \text{ M H}_2\text{SO}_4$	2
Rapeseed	1417	5 mV s ^{-1b}	171	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	3
Carrot	1899	0.2 A g ^{-1b}	276	6 M KOH	4
Chitosan	1582	0.5 A g ^{-1b}	252	6 M KOH	5
tofu	1208	0.5 A g ^{-1b}	262		
		50 A g ^{-1b}	145	6 M KOH	6
Raspberry	1234	0.1 A g ^{-1b}	213	6 M KOH	7
Bagasse	1360	5 mV s ^{-1a}	173	6 M KOH	8
Agar	1672	1 A g ^{-1b}	226	6 M KOH	9
Soybean	1749	0.5 A g ^{-1b}	243	6 M KOH	10
catkin	1462	0.5 A g ^{-1b}	251	6 M KOH	11
Bio-oil	2566	0.5 A g ^{-1b}	289	6 M KOH	This
		20 A g ^{-1b}	227		work
		0.5 A g ^{-1a}	256		

Table S1 Comparison of the specific capacitance of ABF-9%M with reported

 biomass-derived carbon materials previously.

C/S represents current density or sweep rate; ^a two electrode; ^b three electrode

Sample	$R_{\rm s}(\Omega)$	$R_{\rm ct}(\Omega)$	$f_{\rm o}({\rm Hz})$	$\tau_0(s)$
ABF	0.94	0.71	0.16	6.10
ABF-9%M	0.64	0.87	0.20	5.08

Reference

- 1 Y. Gong, D. Li, C. Luo, Q. Fu and C. Pan, Green Chem., 2017, 19, 4132-4140.
- 2 Z. Sun, J. Liao, B. Sun, M. He, X. Pan, J. Zhu, C. Shi and Y. Jiang, *Int. J. Electrochem. Sci.*, 2017, **12**, 12084-12097.
- 3 X. Kang, H. Zhu, C. Wang, K. Sun and J. Yin, *J. Colloid Interface Sci.*, 2018, **509**, 369-383.
- 4 Y. Cheng, B. Li, Y. Huang, Y. Wang, J. Chen, D. Wei, Y. Feng, D. Jia and Yu. Zhou, *Appl. Surf. Sci.*, 2018, **439**, 712-723.
- 5 X. Deng, B. Zhao, L. Zhu and Z. Shao, Carbon, 2015, 93, 48-58.
- 6 T. Ouyang, K. Cheng, F. Yang, L. Zhou, K. Zhu, K. Ye, G. Wang and D. Cao, J. Mater. Chem. A, 2017, 5, 14551–14561.
- 7 Y. Yao, Q. Zhang, P. Liu, L. Yu, L. Huang, S. Z. Zeng, L. Liu, X. Zeng and J. Zou, *RSC Advances*, 2018, 8, 1857-1865.
- 8 S. S. Gunasekaran, S. K. Elumalali, T. K. Kumaresan, R. Meganathan, A. Ashok, V. Pawar, K. Vediappan, G. Ramasamy, S. Z. Karazhanov, K. Raman and R. S. Bose, *Materials Letters*, 2018, 218, 165-168.
- 9 L. Zhang, H. Gu, H. Sun, F. Cao, Y. Chen and G. Z. Chen, *Carbon*, 2018, 132, 573-579.
- 10 G. Lin, R. Ma, Y. Zhou, Q. Liu, X. Dong and J. Wang, *Electrochim. Acta*, 2018, 261, 49-57.
- 11 S. Gao, X. Li, L. Li and X. Wei, Nano Energy, 2017, 33, 334-342.