Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Nano-embedded microstructured FeS₂@C as a high capacity and cycle-stable Na-storage anode with the optimized ether-based electrolyte

Min Zhou^{\dagger}, Hongwei Tao^{\dagger}, Kangli Wang,^{*} Shijie Cheng, Kai Jiang^{*}

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and

Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

† These authors contributed equally to this work

Corresponding Author: kjiang@hust.edu.cn, klwang@hust.edu.cn

1. X-ray photoelectron spectra of the FeS₂@C

Fig. S1. Typical XPS spectra of the FeS₂@C composite: (a) survey spectra, (b) high-resolution image of Fe 2p band, (c) high-resolution image of S 2p band, (d) high-resolution image of C 1s band

2. Thermogravimetric (TG) analysis of the FeS2@C

Fig. S2. TG curves of the $FeS_2@C$ composite

Under the air atmosphere, the $FeS_2@C$ experience the transformation of FeS_2 to Fe_2O_3 and the oxidation of C. Taking into acount of the weight loss of the former transformation, the contents of carbon is calculated to be 32.4%.

3. SEM images of the as-prepared FeS₂@C

Fig. S3. SEM image of the as prepared $FeS_2@C$

4. N₂ adsorption–desorption isotherm of the as-prepared $FeS_2@C$

Fig. S4. N_2 adsorption-desorption isotherm of the as prepared FeS₂@C

5. Cyclic voltammetry analysis of the FeS₂@C in different ether- and ester-based electrolyte

Fig. S5. CV curves of the as-prepared $FeS_2@C$ electrode in (a) $NaPF_6/EC-DEC$; (b) $NaPF_6/DME$; (c) $NaPF_6/DGME$; (d) $NaPF_6/TGME$. Scanning rates: 0.2 mV s⁻¹; voltage range: 0.005 - 3 V

6. Cycling performances of the FeS₂@C in the electrolytes with different solvents

Fig. S6. Cycling performances of the FeS₂@C at 0.5 A g^{-1} in the electrolytes with different solvents: NaPF₆/EC-DEC, NaPF₆/DME, NaPF₆/DGME, NaPF₆/TGME. Voltage range: 0.005 ~ 3V

7. The side reactions between carbonate solvents and polysulfide

8. The Na storage performances of carbon in the electrolyte of NaPF₆/DME.

Fig. S7. (a)The charge-discharge profiles and (b) cycling performances of carbon derived from critic acid at 0.2 A g^{-1} ;

The carbon derived from critic acid can deliver a reversible capacity of 32 mAh g^{-1} , respectively. As the carbon contents in the FeS₂@C composite is 32.4%, the capacities contribution from carbon is 15 mAh g^{-1} .

9. Electrochemical impedance spectra (EIS) analysis of the FeS₂@C at the charged state after the 1st and 30 th cycle in the electrolytes with different solvents and Na salts

Cycle	Samples	$R_{S}(\Omega)$	$R_{SEI}\left(\Omega\right)$	CPE _S (F)	$R_{ct}(\Omega)$	CPE _{dl} (F)	Chi-Squared
	B _{EC-DEC}	7.5	25.0	2.2×10 ⁻⁵	14.8	2.0×10 ⁻⁵	3.8×10 ⁻³
1	B _{DME}	5.7	1.3	4.3×10 ⁻⁷	2.3	1.1×10 ⁻⁴	2.5×10 ⁻³
1 st	B _{DGME}	9.0	7.3	3.4×10 ⁻⁷	9.2	8.8×10 ⁻⁴	1.5×10 ⁻³
	B _{TGME}	21.8	14.5	6.5×10 ⁻⁶	34.8	1.1×10 ⁻⁴	6.6×10 ⁻⁴
30 th	B _{EC-DEC}	9.6	41.7	1.9×10 ⁻⁵	346.4	2.6×10 ⁻⁵	2.5×10 ⁻⁴
	B _{DME}	5.0	0.6	1.6×10 ⁻⁶	1.7	1.8×10 ⁻⁴	3.0×10 ⁻³
	B _{DGME}	17.5	6.5	7.8×10 ⁻⁷	8.7	2.2×10 ⁻⁴	3.5×10 ⁻⁴
	B _{TGME}	8.4	13.7	1.0×10 ⁻⁴	32.6	2.8×10 ⁻⁵	7.8×10 ⁻⁵

Table S1 Fitting results of the Nyquist plots of the FeS₂ electrode cycled in the electrolytes with different solvents

Table S2 Fitting results of the Nyquist plots of the FeS_2 electrode cycled in the electrolytes with different Na salts

Cycle	Samples	$R_{S}(\Omega)$	$R_{SEI}\left(\Omega\right)$	CPE _S (F)	$R_{ct}(\Omega)$	CPE _{dl} (F)	Chi-Squared
	B _{NaClO4}	19.1	207.7	9.5×10 ⁻⁵	66.8	1.8×10 ⁻⁴	1.6×10 ⁻³
1st	B _{NaCF3SO3}	50.4	5.7	6.9×10 ⁻⁶	42.1	3.2×10 ⁻⁴	1.2×10 ⁻³
	B _{NaPF6}	5.7	1.3	4.3×10 ⁻⁷	2.3	1.1×10 ⁻⁴	2.5×10 ⁻³
	B _{NaClO4}	2.2	340.8	3.3×10 ⁻⁴	297.0	2.0×10 ⁻⁵	3.0×10 ⁻⁴
30th	B _{NaCF3SO3}	65.4	20.5	2.1×10 ⁻⁵	181.2	1.9×10 ⁻⁵	3.9×10 ⁻⁴
	B _{NaPF6}	5.0	0.6	1.6×10 ⁻⁶	1.7	1.8×10 ⁻⁴	3.0×10 ⁻³

Fig. S8. CV curves of the as-prepared $FeS_2@C$ electrode in DME-based electrolyte with different Na salts: NaPF₆/DME, NaCF₃SO₃/DME, NaClO₄/DME. Scanning rates: 0.2 mV s⁻¹; voltage range: 0.005 - 3 V.

As shown in Fig. S8, in the CV curves of the electrode tested in NaClO₄/DME, there are obvious redox peaks located at 2.0/2.5 V, which cannot be observed in the CV curves of that in NaSO₃CF₃/DME and NaPF₆/DME. As the S/Fe mole ratios of the electrode obtained in NaClO₄/DME (1.06) is much lower than that of the pristine electrode, this peak can be ascribed to the redox reactions of the polysulfide which are dissolved in the electrolyte. While in in NaSO₃CF₃/DME and NaPF₆/DME, the S/Fe mole ratios of the electrode is 1.39 and 1.95, so that the redox peaks located at 2.0/2.5 V are insignificant.

11. XPS characterizations on the surface of the FeS₂@C electrode obtained in in DME-based electrolyte with different Na salts

Fig. S9. Typical XPS spectra of the electrode cycled in $NaPF_6/DME$, $NaCF_3SO_3/DME$ and $NaClO_4/DME$ after the initial discharge process: (a) survey spectra, (b) high-resolution image of C 1s band, (c) high-resolution image of O 1s band, (d) high-resolution image of F 1s band.

As shown in the XPS spectra, the compounds in the SEI films formed in NaPF₆/DME are mainly NaF, Na₂CO₃, Na₂O, RCH₂ONa, phosphates, et al. The SEI films formed in NaCF₃SO₃/DME are mainly composed of NaF, Na₂CO₃, Na₂O, RCH₂ONa, whereas those formed in the NaClO₄/DME are composed of Na₂CO₃, Na₂O, RCH₂ONa and chlorates. It is noteworthy that the SEI films formed in NaPF₆/DME show an increase in the NaF contents and decrease in the Na₂CO₃ contents compared to that of NaCF₃SO₃/DME and NaClO₄/DME.

12. Elemental contents of the electrodes analysis of the FeS2@C in DME-based electrolyte with

different Na salts

Table S3 Elemental contents of the $FeS_2@C$ electrodes cycled in the DME-based electrolyte with NaClO₄, NaCF₃SO₃ and NaPF₆ after 30 cycles using XPS tester

Sample	Na(mol%)	F(mol%)	O(mol%)	C(mol%)	P(mol%)	Fe(mol%)	S(mol%)	S/Fe
								ratios
B _{NaClO4}	5.69	0.54	18.35	72.72	0.37	1.15	1.22	1.06
B _{NaCF3SO3}	6.19	0.74	18.68	69.11	0.4	2.06	2.86	1.39
B _{NaPF6}	5.87	0.49	14.88	73.44	0.42	1.68	3.27	1.95

- (**b**) (a) 32 NaPF./DGME - 1st - 2nd - 3rd 1200 NaCF₃SO₂/DGME NaPF₆/DGME 0 ٠ ٩ 3 1000 NaClO_/DGME NaFSI/DGME NaCF₃SO₃/DGME 1st 2 NaTFSI/DGME 2nd Specific Capacity/mA.h.g⁻¹ 3rd 800 0 Voltage/V 3 2 1 0 NaCIO,/DGME -1st 2nd 3rd 600 3 400 NaFSI/DGME -1st 2 -2nd 1 3rd 200 0 3 NaTFSI/DGME - 1st 010 2 2nd 3rd 5 10 15 20 25 30 35 0 Cycle Number 400 600 800 1000 200 (**d**) (c) NaPF₆/TGME - 1st 2nd 2 1200 3rd 0 NaPF₆/TGME ٥ NaCF₃SO₃/TGME • 1000 NaCF₃SO₃/TGME NaClO_/TGME NaFSI/TGME - 1st 0 2 2nd Specific Capacity/mA.h.g⁻¹ NaTFSI/TGME 3rd 800 0 З Voltage/V NaClO₄/TGME -1st 2 1 0 600 2nd 3rd 400 NaFSI/TGME 1st 2 2nd 3rd 0 200 3 NaTFSI/TGME 1st 2 2nd 0 3rd 0 5 10 20 25 30 35 15 0 0 200 400 600 800 1000 Cycle Number Specific Capacity/mA.h.g⁻¹ (**f**) (e) NaPF₆/DME - 1st 2nd 3rd 1200 0 NaPF₆/DME • NaCF₃SO₃/DME 3 2 1 1000 NaClO₄/DME NaFSI/DME 1st NaCF₃SO₃/DME NaTFSI/DME Specific Capacity/mA.h.g⁻¹ 2nd 3rd 0 800 3 2 1 0 Voltage/V NaClO₄/DME **-**1st 600 2nd 3rd 3 400 NaFSI/DME 2 - 1st 2nd 3rd 200 0 3 2 NaTFSI/DME - 1st 01
- 13. The Na storage performances of the FeS₂@C in various ether-based electrolytes (DME, DGME, TGME) with different Na salts (NaPF₆, NaCF₃SO₃, NaFSI, NaTFSI, NaClO₄)

Fig. S10. Charge-discharge profiles of the FeS₂@C in DGME-based (a), TGME-based (c) and DME-based (e) electrolytes in the voltage range of $0.005 \sim 3$ V; Comparison of the cycling performances of FeS₂@C in in DGME-based (b), TGME-based (d) and DME-based (f) electrolytes. Current density: 500 mA g⁻¹.

2nd 3rd

1000

0

200

400

Specific Capacity/mA.h.g-1

600

800

5

10

15

Cycle Number

20

25

30

35

14. Comparison of the Na storage performances in different electrolyte systems.

Table S4 Comparison of the Na storage performances of the $FeS_2@C$ electrodes in different electrolyte systems.

Electrolyte	Initial discharge/charge capacity(mAh g ⁻¹)	Initial coulombic efficiency(%)	Coulombic efficiency during cycling(%)	Capacity retention after 30 cycles(%)
NaPF ₆ /EC+DEC	1180.8/752.1	63.7	93.9	27.9
NaPF ₆ /DME	977.8/832.5	85.1	99.9	95.0
NaPF ₆ /DGME	978.6/802.9	82.0	99.8	98.6
NaPF ₆ /TGME	793.2/630.7	79.5	99.8	100
NaClO ₄ /DME	1257.3/1025.2	81.5	95.2	41.4
NaClO ₄ /DGME	759.2/679.6	89.5	98.3	52.3
NaClO ₄ /TGME	740.6/624.5	84.3	99.3	72
NaCF ₃ SO ₃ /DME	974/827.9	85.0	97.6	86.1
NaCF ₃ SO ₃ /DGME	1025.3/810.2	79.0	99.5	45.6
NaCF ₃ SO ₃ /TGME	745.0/631.2	84.7	99.4	74.9
NaFSI/DME	809.6/689.7	85.2	98.7	62
NaFSI/DGME	950.0/770.3	81.1	99.2	41.2
NaFSI/TGME	975.7/886.2	90.8	99.6	46.2
NaTFSI/DME	745.3/636.1	85.4	99.0	31
NaTFSI/DGME	851/769.1	90.4	99.4	25.3
NaTFSI/TGME	774.2/702.2	90.7	99.2	23.1

15. Ionic conductivity of different electrolytes

Sample		Ionic conductivity (µs cm ⁻¹)		
1M	NaPF ₆ /DME	12890		
1M	NaPF ₆ /DGME	7320		
1M	NaPF ₆ /TGME	2580		
1M	NaPF ₆ /EC-DEC	8920		
1M	NaCF ₃ SO ₃ /DME	2120		
1M	NaClO ₄ /DME	1120		

 Table S5
 Ionic conductivity of different electrolytes with different solvents and Na salts

As shown in Table S4, 1M NaPF₆/DME demonstrate the highest ionic conductivity of 12890 μ s cm⁻¹.

16. Na storage performances of the FeS₂@C in NaPF₆/DME.

Fig. S11 Charge-discharge profiles of the FeS₂@C in NaPF₆/DME at 0.2 A g⁻¹. Voltage range: 0.005 ~ 3 V.

At the current density of 0.2 A g^{-1} , the FeS₂@C deliver an initial charge/discharge capacity of 1007.5 /853 mAh g^{-1} , corresponding to the initial coulombic efficiency of 84.7%.

Fig. S12 Charge-discharge profiles of the $FeS_2@C$ in $NaPF_6/DME$ at different current densities from 0.2 to 40 A g⁻¹. Voltage range: 0.005 ~ 3 V.

Fig. S13 Charge-discharge profiles of the FeS₂@C in NaPF₆/DME at 5 A g⁻¹ of different cycles. Voltage range: $0.005 \sim 3$ V.

17. Na storage performances of the FeS₂ without carbon.

Fig. S14 (a) Charge-discharge profiles of the FeS₂ in NaPF₆/DME at 0.2 A g^{-1} ; (b) cycling performances of FeS₂ at 5 A g^{-1} : voltage range: 0.005 ~ 3 V.

18. SEM and TEM images of FeS₂@C electrode after different cycles at the fully charged state.

Fig. S15. SEM images of FeS₂@C electrode at the fully charged state after 1000 cycles

Fig. S16. TEM images of $FeS_2@C$ electrode at the fully charged state: (a) pristine electrode, (b) electrode cycled after 1000 cycles