Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Simultaneously achieving superior foldability, mechanical strength and toughness for transparent healable polysiloxane films through building hierarchical crosslinked networks and dual dynamic bonds

Youhao Zhang, Li Yuan, Guozheng Liang* and Aijuan Gu*

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Materials Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China

Scheme S1 Synthetic routes of SS-NCO, LPx, HPSi and HE-NCO.

Fig. S1 FTIR spectrum of SS-NCO.

Fig. S2 TGA curves of LPx-SS-HP and LPx-SS under N₂ atmosphere.

Fig. S3 Digital images during the scratch healing process on the same location of LP2-SS-HP film left in air for 24 h before starting self-healing (a: the 1st healing process; b: the 2nd healing; c: the 3rd healing process).

Fig. S4 Tensile stress-strain curves of LP2-IP-HP, LP2-HE-HP and LP2-SS-HP films.

Fig. S5 Digital images during the healing process of LP2-IP-HP film.

Fig. S6 Digital images during the healing process of LP2-HE-HP film.

Sample name	Self-healing component	<i>T_g</i> (°C)	<i>Т_{di}</i> (°С)	Self-healing condition	Self-healing Efficiency (%)	Photo ^b	σ _b ^c (MPa)	ε _b (%)	Ref
P1	Hydrogen bonds	a		1 h		Yes			C1
P2				2 h		Yes			51
SESi-3	Hydrogen bonds	-112.7		25 °C/24 h	90	Yes	0.45	400	S2
SESi ₁	Hydrogen bonds	-118.3		100 °C/16 h	100	No	2.75	225	S3
Co-TIA-PDMS	Coordination bonds	<-100	<350	140 °C/24 h	52.2	Yes	1.12	560	S4
Fe-TIA-PDMS	Coordination bonds	<-90		60 °C/20 h	94.3	Yes	0.35	2500	S5
PDMS-Boroxine	Boroxine	65		70 °C/12 h	100	Yes	9.46	10	S6
Fe-Hpdca-PDMS	Coordination bonds	<-90		r.t./48 h	90	Yes	0.225	1880	S7
PDMS-PtL	Pt \cdots Pt and π - π interaction	<-50		r.t./12 h	100	Yes	0.3	1390	S 8
Zn(OTf) ₂ -PDMS	Coordination bonds	<-50		r.t./48 h	76	Yes	0.6	310	S9
HSE-0.65	Hydrogen bonds	-120		80 °C/24 h	>90	Yes	0.15	550	S10
PDMS-DA-PU	- Diels-Alder reaction			140 °C/0.5 h	99	Yes	1.04	108	S11
PDMS/PCL-DA-PU-10%				80 °C/24 h	90	Yes	3.25	244	
PM2FS	- Diels–Alder reaction			140 °C/0.5 h	85	Yes	0.13	35.5	S12
PM3FS				80 °C/24 h	95	Yes	0.61	50.9	
Py-PDMS-Co-0.5	Coordination bonds	-114	233	r.t./24 h	91	Yes	0.13	560	S13
Eu(OTf) ₃ -PDMS	- Coordination bonds	-19.1		r.t./24 h	~100	No	0.2	300	S14
Tb(OTf) ₃ -PDMS		-18.1			~100	No	0.25	290	
PDMS-network	Vinylogous urethane	-118		75 °C/3 h		Yes	0.08	67	S15
SR-SH	Disulfide			light radiation/48 h	84	Yes	1.03	178	S16
PDMS-TFB	Imine	-117		25 °C/1 h	98.3	Yes	0.035	135	S17
C1	Boronic ester bonds			r.t./24 h	85	Yes	1.28	1000	S18
DAE@AS	Imine			UV-light/2 h	91	Yes	0.35	55	S19
PAPMS-25-OA-2.5	Ionic bonds		200	methanol and chloroform mixture	81.5	Yes	4.43	1150	S20
A_4B_2	Acylhydrazone; Hydrogen bonds	-120		120 °C/1 h	99	Yes	1.75	150	S21
PY-PSBTh	Lewis acid- base adduct			70 °C/1 h		Yes			S22
PDMS-MeNNN-Zn	Coordination bonds	-69.6		r.t./1 h	99.3	Yes	0.066	456	- S23
PDMS-NNN-Zn		-68.7		r.t./24 h	100.3	Yes	0.091	230	
PDMS-PUa	Hydrogen bonds			r.t./48 h	90	Yes	0.81	551	S24
Si-A_IN30	Ionic bonds			120 °C/12 h	77	Yes	3.08	387	S25
PDMS-1	Disulfide			r.t./4 h	95	Yes	0.15	700	S26
LP2-SS-HP	Disulfide	96	282	100 °C/0.5 h	96.5	Yes	8.6	224.2	This work

 Table S1 Typical self-healing properties of polydimethylsiloxane polymers

a: data not given in the reference. b: "Yes" means that optical microscopic photos representing the self-healing of the sample were provided in the reference. "No" means that optical microscopic photos representing the self-healing of the sample were not provided in the reference. c: the value of the original sample without scratch.

Film σ_b (MPa) ε_b (%)E (MPa)Toughness (MJ m⁻³)LP2-IP-HP 8.8 ± 0.5 191.4±4.1196.6±12.714.4±0.2LP2-HE-HP 8.5 ± 0.4 213.8±3.1181.2±13.515.4±0.3

Table S2 Tensile properties for LP2-IP-HP and LP2-HE-HP films

References

- [S1] N. Roy, E. Buhler, J.-M. Lehn, Chem. Eur. J. 2013, 19, 8814.
- [S2] A. Zhang, L. Yang, Y. Lin, L. Yan, H. Lu, L. Wang, J. Appl. Polym. Sci. 2013, 129, 2435.
- [S3] L. Yang, Y. Lin, L. Wang, A. Zhang, Polym. Chem. 2014, 5, 153.
- [S4] X.-Y. Jia, J.-F. Mei, J.-C. Lai, C.-H. Li, X.-Z. You, Chem. Commun. 2015, 51, 8928.
- [S5] X.-Y. Jia, J.-F. Mei, J.-C. Lai, C.-H. Li, X.-Z. You, *Macromol. Rapid Commun.* 2016, 37, 952.
- [S6] J. C. Lai, J. F. Mei, X. Y. Jia, C. H. Li, X. Z. You, Z. Bao, Adv. Mater. 2016, 28, 8277.
- [S7] C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, C. Linder, X.-Z. You, Z. Bao, *Nat Chem* 2016, 8, 618.
- [S8] J. F. Mei, X. Y. Jia, J. C. Lai, Y. Sun, C. H. Li, J. H. Wu, Y. Cao, X. Z. You, Z. Bao, *Macromol. Rapid Commun.* 2016, 37, 1667.
- [S9] Y.-L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.-C. Chiu, V. Feig, J. Xu, T. Kurosawa, X. Gu, C. Wang, M. He, J. W. Chung, Z. Bao, *J. Am. Chem. Soc.* 2016, 138, 6020.
- [S10] Y. You, W. Huang, A. Zhang, Y. Lin, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3760.
- [S11] J. Zhao, R. Xu, G. X. Luo, J. Wu, H. S. Xia, Polym. Chem. 2016, 7, 7278.
- [S12] J. Zhao, R. Xu, G. Luo, J. Wu, H. Xia, J. Mater. Chem. B 2016, 4, 982.
- [S13] L. Liu, S. Liang, Y. Huang, C. Hu, J. Yang, Chem. Commun. 2017, 53, 12088.
- [S14] Y.-L. Rao, V. Feig, X. Gu, G.-J. Nathan Wang, Z. Bao, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3110.
- [S15] T. Stukenbroeker, W. D. Wang, J. M. Winne, F. E. Du Prez, R. Nicolay, L. Leibler, *Polym. Chem.* 2017, 8, 6590.
- [S16] H. P. Xiang, M. Z. Rong, M. Q. Zhang, Polymer 2017, 108, 339.
- [S17] B. Zhang, P. Zhang, H. Zhang, C. Yan, Z. Zheng, B. Wu, Y. Yu, *Macromol. Rapid Commun.* 2017, 38, 1700110.
- [S18] Y. Zuo, Z. Gou, C. Zhang, S. Feng, Macromol. Rapid Commun. 2016, 37, 1052.
- [S19] M. Kathan, P. Kovaricek, C. Jurissek, A. Senf, A. Dallmann, A. F. Thunemann, S. Hecht, Angew. Chem. Int. Ed. Engl. 2016, 55, 13882.
- [S20] H. Lu, S. Feng, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 903.

- [S21] D.-D. Zhang, Y.-B. Ruan, B.-Q. Zhang, X. Qiao, G. Deng, Y. Chen, C.-Y. Liu, *Polymer* 2017, 120, 189.
- [S22] F. Vidal, H. Lin, C. Morales, F. Jakle, *Molecules* 2018, 23, 405.
- [S23] D. P. Wang, J. C. Lai, H. Y. Lai, S. R. Mo, K. Y. Zeng, C. H. Li, J. L. Zuo, *Inorg. Chem.* 2018, 57, 3232.
- [S24] C. Liu, C. Ma, Q. Xie, G. Zhang, J. Mater. Chem. A 2017, 5, 15855.
- [S25] F. B. Madsen, L. Yu, A. L. Skov, ACS Macro Lett. 2016, 5, 1196.
- [S26] C. Lv, K. Zhao, J. Zheng, Macromol. Rapid Commun. 2018, 39, 1700686.