Supporting Information

Valorization of lignin waste: High electrochemical capacitance of Lignin-derived carbons in aqueous and ionic liquid electrolytes

Wantana Sangchoom, Darren Walsh and Robert Mokaya*

University of Nottingham, University Park, Nottingham NG7 2RD, U. K.

E-mail: r.mokaya@nottingham.ac.uk (R. Mokaya)

Sample	Elemental composition (%)		<u>ion (%)</u>	H/C ratio	O/C ratio
	C	Н	0		
LAC600:2	67.8	1.36	30.84	0.02	0.34
LAC700:2	83.3	0.50	16.20	0.006	0.15
LAC800:2	85.9	0.35	13.75	0.004	0.12
LAC600:4	75.3	1.33	23.37	0.018	0.23
LAC700:4	78.3	0.52	21.18	0.0066	0.20
LAC800:4	84.9	0.41	14.69	0.0048	0.13
LAC900:4	92.6	0.36	7.04	0.0039	0.06

Table S1. Elemental composition (%) and H/C ratio of lignin-derived activated carbons

Supporting Table S2. Ion size, ionic mobility and conductivity of aqueous electrolytes used in electrochemical studies.

	Viscosity (cP)	ions	Conductivity $(cm^2/\Omega mol)$	hydrate ionic radius (Å)
2 M H ₂ SO ₄	1.091	H ⁺	349.8 ^{2,3}	2.83
		SO4 ²⁻	78.9 ³	3.8 ^{3,4}
2 M KCl	0.915	K+	73.5 ^{3,6}	2.8-3.316-9
		Cl-	76.35 ²	3.810

References

- 1. G. W. Vinal, Craig, D.N., J. Research, 1933, 10, 781-793.
- 2. M. Berowitz and W. Wan, J. Chem. Phys., 1987, 86, 376-382.
- 3. X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu and J. Su, J. Power Sources, 2012, 216, 290-296.
- E. Frackowiak, Beguin, Francois, ed., Supercapacitors: materials, systems and applications, John Wiley & Sons, 2013.
- 5. J. Kestin, H. E. Khalifa and R. J. Correia, J. phys. Chem. Ref. Data, 1981, 10.
- 6. R. N. Reddy and R. G. Reddy, J. Power Sources, 2003, 124, 330-337.
- 7. I. Persson, Pure Appl. Chem., 2010, 82, 1901-1917.
- 8. J. Mähler and I. Persson, *Inorg. Chem.*, 2011, **51**, 425-438.
- 9. M. Inagaki, H. Konno and O. Tanaike, J. Power Sources, 2010, 195, 7880-7903.
- L. A. Richards, A. Schaefer, B. S. Richards and B. Corry, *Small GTPases*, 2012, 8, 1701-1709.

Supporting Table S3. A summary of electrolyte properties; molecular weight, electrical conductivity and viscosity of two ionic liquid electrolytes.

	Ionic size	Density ^a	Conductivity ^b	Viscosity
	(Å)	(g/cm ³)	(mS/cm)	(cP) ^c
[EMIm][EtSO ₄]	(+) 7.8 x 5.8 x 3.3 ¹			107.7 ³ (24 °C)
		1.243 ³	3.82 ²	78.5 (30 °C)
[BMIm][BF ₄]	(+) 9.7 x 7.0 x 3.3 ¹		4.38 ²	109.2 ³ (20 °C)
.][4]	(-) $3.1 \times 3.1 \times 3.1^1$	1.205 ³		75.4 (30 °C)

^{*a*} The density at 20 °C, ^{*b*} the conductivity at 25 °C, ^{*c*}1 cP = 1 m Pa S

References

- S. Liu, W. Liu, Y. Liu, J.-H. Lin, X. Zhou, M. J. Janik, R. H. Colby and Q. Zhang, *Polym. Int.*, 2010, **59**, 321-328.
- 2. J. Vila, L. M. Varela and O. Cabeza, *Electrochimica Acta*, 2007, **52**, 7413-7417.
- 3. J. Jacquemin, P. Husson, A. A. H. Padua and V. Majer, Green Chem., 2006, 8, 172-180.

Supporting Figure S1. Schematic of home-made sandwich type electrode (a, b), and an actual electrode image (c).

Supporting Figure S2. Thermogravimetric analysis curves of lignin-derived activated carbons; LACT:2 set (left panel) and LACT:4 set (right panel).

Supporting Figure S3. (A) Nitrogen sorption isotherms and (B) pore size distribution curves of lignin-derived carbon activated at 600 – 800 °C and KOH/hydrochar ratio of 2.

Supporting Figure S4. (A) Nitrogen sorption isotherms and (B) pore size distribution curves of lignin-derived carbon activated at 600 – 900 °C and KOH/hydrochar ratio of 4.

Supporting Figure S5. TEM images of lignin-derived activated carbons.

Supporting Figure S6. Powder XRD patterns of lignin-derived carbon activated at 600 – 900 °C and KOH/hydrochar ratio of (A) 2 or (B) 4.

Supporting Figure S7. Raman spectra of lignin-derived activated carbons.

Supporting Figure S8. Galvanostaic charge/discharge curves of all LAC electrodes measured at different current load of 0.5 (A, B) and 5.0 A/g (C, D) in aqueous electrolytes. When the current load increases, a broad IR drop is observed at higher current load of 5 A/g (inset panel C)

Supporting Figure S9. A plot of specific capacitance and micropore surface area as a function of total surface area of LAC electrodes in three aqueous electrolytes.

Supporting Figure S10. The correlation between specific capacitance (C_{sp}) and surface area or surface capacitance (C_s) and surface area for LAC electrodes measured in (A) 2 M H₂SO₄, and (B) 2 M KCl electrolyte.

Supporting Figure S11. Cyclic voltammograms of highly porous LAC electrodes at scan rate of 5 mV/s in: (A) 2 M H₂SO₄, and (B) 2 M KCl.

Supporting Figure S12. Galvanostatic charge/discharge curves measured at current load of 0.5 (A, B) and 3.0 A/g (C, D) in EMImEtSO₄ and BMImBF₄ electrolytes.

Supporting Figure S13. The relationship between specific capacitance or accessible surface area in term of surface capacitance with surface area of LAC electrodes measured in EMImEtSO₄ and BMImBF₄ electrolytes.

Supporting Figure S14. The correlation between specific capacitance and surface area or mesopores surface area of LAC electrodes measured in EMImEtSO₄ and BMImBF4 electrolytes.

Supporting Figure S15. CV curves of LAC electrodes measured at scan rate of 5 mV/s in two ionic liquid electrolytes; (a) EMImEtSO₄, and (b) BMImBF₄.