Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Journal Name

COMMUNICATION

Supporting Information

Identifying the origin and contribution of the pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for the application of sodium-ion capacitors

Chunxia Ding,*b Yaping Tao, c Deming Tan,d Yin Zhang, Faxing Wang,d and Feng Yu*a

^{*a*} School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia. Email: feng.yu@hdr.gut.edu.au

^{b.} College of Science, Hunan Agricultural University, Changsha, Hunan 410128, China. Email: dcxxys@hunau.edu.cn

^{c.} College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China.

^d Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.

Email: faxing.wang@tu-dresden.de.

COMMUNICATION

Supplementary Figures

Supplementary Figure S1. (a) SEM images of the (a) WS_2 nanosheets and (b) bulk WS_2 . (c) The corresponding elemental mapping images of the WS_2 nanosheets.

Supplementary Figure S2. The atomic force microscopy (AFM) image of the WS_2 sample and the corresponding height profile.

Supplementary Figure S3. (a) The XRD pattern of the WS₂ nanosheets. The full width at half maximum (FWHM) of (002) peak for (b) the WS₂ nanosheets and (c) bulk WS₂. Except for the slightly different FWHM and intensity of (002) peak, there are almost no big differences between our WS₂ nanosheets (with the thicknesses of 20-30 layers) and the bulk WS₂. This applies to many previous reported WS₂ nanosheets (with the thickness of >10 layers) as well.^{1–4}

COMMUNICATION

Supplementary Figure S4. (a, b) TEM images and (c) the corresponding lattice spacing of the WS_2 nanosheets.

Supplementary Figure S5. The XPS spectrum of (a) W 4f and (b) S 2p for the WS₂ nanosheets.

COMMUNICATION

Supplementary Figure S6. The CV curves of the electrode based on WS_2 nanosheets at a sweep rate of 3 mV s⁻¹.

Supplementary Figure S7. The initial charge/discharge curves of the electrode based on WS_2 nanosheets at a current density of 0.1 A g⁻¹.

COMMUNICATION

Supplementary Figure S8. The rate capability of the electrode based on WS₂ nanosheets.

Supplementary Figure S9. The The CV curves of the electrode based on the WS₂ nanosheets at various sweep rates. (b) The determination of the *b*-value at cathodic peak regimes. The value of *b* can be determined from the slope of log (peak current) versus log (sweep rate) as following the equation of $i = av^b$, in which *a* and *b* are constants. The *b* value of 0.5 indicates diffusion-controlled charge storage and the value of 1 suggests a capacitive (or pseudocapacitive) charge-storage mechanism. Here the *b* value calculated at the anodic peak regimes was estimated to be 0.7, suggesting the combination of a capacitance-controlled current and a diffusion-controlled current. In this case, the current can be separated into capacitive (k_1v) contribution and diffusion-controlled contribution ($k_2v^{1/2}$) as follows: $i = k_1v + k_2v^{1/2}$. Then, the k_1 and k_2 contents at various potentials can be determined by plotting $i/v^{1/2}$ versus $v^{1/2}$. 5–8

Supplementary Figure S10. Contribution ratios of capacitances from the surface-controlled charge storage and diffusion-limited charge storage for the electrode based on WS_2 nanosheets at various sweep rates.

Supplementary Figure S11. The N_2 adsorption-desorption isotherm of the for the WS₂ nanosheets with a specific surface area of 28 m² g⁻¹.

Supplementary Figure S12. The electrical-double-layer typed capacitive test in a standard ionic liquid electrolyte (EMI-BF₄) ⁹ for a symmetrical supercapacitor based on the WS₂ nanosheets as electrodes. The specific capacitance was calculated to be about 1.95 F g^{-1} . This EDLC contribution is low since the specific capacitance is proportional to the specific surface area to a certain extent.¹⁰

COMMUNICATION

Supplementary Figure S13. The used equivalent circuit for fitting impedance spectra of the electrode based on the WS₂ nanosheets in the potential range of 1-3V vs. Na/Na⁺.

Supplementary Figure S14. Nyquist plots of the electrode based on the WS_2 nanosheets was discharged to the (a) 0.5 V and (b) 0.1 V vs. Na/Na⁺. (c) The used equivalent circuit for fitting impedance spectra.

Supplementary Figure S15. (a) Schematic illustration of the different site for surface Na ion storage. Hirshfeld charges distribution (b) before and (c) after Na adsorption. The yellow, blue and purple spheres are the S, W and Na atom, respectively.

COMMUNICATION

Supplementary Figure S16. Schematic illustration of the fabricated Na-ion capacitor based on the WS_2 nanosheets as the anode.

Supplementary Figure S17. The electrochemical behaviours of the used cathode for the WS₂ based Na ion capacitor. (a) The CV curves at various sweep rates. (b) Galvanostatic charge/discharge profiles and (c) specific capacitances at various current densities. The mass ratio of the used cathode and WS₂ anode was obtained according to the following equation: $Q_+ = Q_- = m_+ \times U_+ \times C_+ = m_- \times U_- \times C_-$, where Q is the capacity, U is the potential range, m is the mass of active electrode, and subscripts stand for the cathode and anode, respectively.^{11,12}

Supplementary Figure S18. The CV curves of the fabricated Na-ion capacitor based on WS_2 nanosheets as the anode at various sweep rates

COMMUNICATION

Supplementary Figure S19. The SEM image of (a) the WS_2 anode for the Na-ion capacitor after 6000 cycles, (b) the acetylene back and (c) the binder

COMMUNICATION

Supplementary Figure S20. The coulombic efficiencies of the fabricated Na-ion capacitor during the cycling process.

COMMUNICATION

Supplementary Table S1. Hirshfeld charges distribution before and after Na adsorption.

	WS_2	T_W
Na ₁		0.23
\mathbf{S}_1	-0.06	-0.06
S_2	-0.06	-0.11
S_3	-0.06	-0.06
S_4	-0.06	-0.1
S_5	-0.06	-0.06
S_6	-0.06	-0.11
S_7	-0.06	-0.06
S_8	-0.06	-0.11
W_1	0.1	0.11
W_2	0.1	0.11
W_3	0.1	0.11
W_4	0.1	0.11

References

- 1 X. Mao, Y. Xu, Q. Xue, W. Wang and D. Gao, Nanoscale Res. Lett., 2013, 8, 430-435.
- 2 Y. Hongjian, Y. Yong, L. Jianghao, M. Peiyan, W. Yucheng, Z. Fan and F. Zhengyi, *J. Mater. Chem. A*, 2015, **3**, 19439–19444.
- 3 Q. Liu, X. Li, Z. Xiao, Y. Zhou, H. Chen, A. Khalil, T. Xiang, J. Xu, W. Chu, X. Wu, J. Yang, C. Wang, Y. Xiong, C. Jin, P. M. Ajayan and L. Song, *Adv. Mater.*, 2015, 27, 4837–4844.
- 4 D. Zheng, Y. P. Wu, Z. Y. Li and Z. B. Cai, RSC Adv., 2017, 7, 14060–14068.
- 5 T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, Nat. Mater., 2010, 9, 146–151.

- 6 V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon and B. Dunn, *Nat. Mater.*, 2013, 12, 518–522.
- 7 H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins and B. Dunn, *Nat. Mater.*, 2017, 16, 454–460.
- 8 F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu and W. Huang, *Chem. Soc. Rev.*, 2017, 46, 6816–6854.
- 9 C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, Chem. Soc. Rev., 2015, 44, 7484–7539.
- 10 S. Tabata, Y. Isshiki and M. Watanabe, J. Electrochem. Soc., 2008, 155, K42-K42.
- 11 F. Wang, X. Wang, Z. Chang, X. Wu, X. Liu, L. Fu, Y. Zhu, Y. Wu and W. Huang, *Adv. Mater.*, 2015, 27, 6962–6968.
- 12 F. Wang, C. Wang, Y. Zhao, Z. Liu, Z. Chang, L. Fu, Y. Zhu, Y. Wu and D. Zhao, *Small*, 2016, **12**, 6207–6213.