Double-atom catalysts: Transition metal dimer anchored C₂N monolayers as N₂

fixation electrocatalysts

Xu Zhang, An Chen, Zihe Zhang, Zhen Zhou*

School of Materials Science and Engineering, Institute of New Energy Material Chemistry,

Computational Centre for Molecular Science, Nankai University, Tianjin 300350, P. R. China

*zhouzhen@nankai.edu.cn (Z.Z.).

Fig. S1 Binding energies against the number of transition metal atoms.

Fig. S2 Optimized structures of the most stable $TM_x@C_2N$ catalysts. The blue and grey balls represent the nitrogen and carbon atoms, respectively. The areas circulated by dashed lines represent the unit cell.

Fig. S3 Band structures of $TM_x@C_2N$ near Fermi level computed by HSE06. The Fermi level is set to zero. For $Ti_1@C_2N$, $Mn_1@C_2N$, $Fe_2@C_2N$, $Co_2@C_2N$ and $Ru_2@C_2N$, the origin represents spin-up and blue means spin-down.

Fig. S4 Optimized structures and Gibbs free energy change of N_2 adsorption on $TM_x@C_2N$ in standing-on and lying-on configurations.

In order to evaluate the reliability of the results computed in a unit cell, the adsorption energies of N_2 and N_2H on $Mo_2@C_2N$ in a $2\times2\times1$ supercell were also calculated and are shown in Table S1. The difference of the computed adsorption energies is lower than 3%, indicating that the results computed in a unit cell is acceptable in this work.

	1×1	2×2
N ₂	-1.17	-1.20
N_2H	-3.53	-3.62

Table S1. Adsorption energies (eV) of N₂ and N₂H on the Mo₂@C₂N in a 2×2×1 supercell.

Table S2. Gibbs free energy change (eV) for the N_2 fixation of distal mechanisms on $TM_x@C_2N$.

	Ti_1	Co ₂	Cu ₂	Ru_2	Rh_2	Ir ₂
$*N_2+H^++e^- \rightarrow *N-NH$	0.77	0.41	0.85	0.55	0.53	1.33
*N-NH+H ⁺ +e ⁻ \rightarrow *N-NH ₂	0.54	-0.11		0.31	0.59	-
*N-NH ₂ +H ⁺ +e ⁻ \rightarrow *N-NH ₃	-	-0.38		-0.27	-	-
$N-NH_3 \rightarrow N+NH_3$	-	-0.22		-0.25	-	-
$*N+H^++e^- \rightarrow *NH$	-	-0.69		-0.36	-	-

Table S3. Energy barriers (eV) for the N₂ fixation of distal mechanisms on TM_x@C₂N.

	Ti ₁	Co ₂	Cu ₂	Ru ₂	Rh ₂	Ir ₂
*N ₂ +H ⁺ +e ⁻ →*N-NH	0.64	0.66	0.30	0.15	0.16	1.35
*N-NH+H ⁺ +e ⁻ →*N-NH ₂	1.14	0.40	-	0.28	1.24	
*N-NH ₂ +H ⁺ +e ⁻ →*N-NH ₃	-	-	-	0.04	-	
$*N+H^++e^{-} \rightarrow *NH$	-	0.83	-	0.81	-	

Table S4. Gibbs free-energy change (eV) for the N_2 fixation of alternating mechanisms on $TM_x@C_2N$.

	Ti ₁	Rh ₂	
$N_2+H^++e^- \rightarrow N-NH$	0.77	0.53	
*N-NH+H ⁺ +e ⁻ →*NH-NH	1.37	0.65	

Table S5. Energy barriers (eV) for the N₂ fixation of alternating mechanisms on TM_x@C₂N.

Fig. S5 Reaction pathway and energy barriers of N₂ fixation on Mo₂@C₂N catalysts.

	ΔG	Ebarrier	Eactivation
$*+N_2 \rightarrow *N_2$	-0.60	-	-
$*N_2+H^++e^- \rightarrow *N-NH$	0.33	0.31	-
*N-NH+H ⁺ +e ⁻ \rightarrow *N-NH ₂	-0.01	0.25	0.02
*N-NH ₂ +H ⁺ +e ⁻ \rightarrow *N-NH ₃	-1.00	0.31	0.66
$N-NH_3 \rightarrow N+NH_3$	0.29	-	-
$*N+H^++e^- \rightarrow *NH$	-0.96	0.51	0.85
$*NH+H^++e^- \rightarrow *NH_2$	0.41	0.25	-
$*NH_2+H^++e^- \rightarrow *NH_3$	0.38	0.44	-
$*NH_3 \rightarrow *+NH_3$	0.49	-	-

Table S6. Gibbs free-energy change (Δ G, eV), energy barriers (E_{barrier}, eV) and activation barriers (E_{activation}, eV) for the N₂ fixation on Mo₂@C₂N.

The activation barriers were calculated according to previous reports¹ based on:

 $E_{activation}(U) = E^0_{activation}(U^0) + \beta'(U-U^0)$

in which $E_{activation}^0$ is the barrier obtained from DFT with zero-point vibrational energy correction. U^0 is the equilibrium potential for the reductive adsorption of a proton. The chemical potential of adsorbed H is equal to that of a proton-electron pair. U is the electrode potential and -0.41 V is used here. β' is obtained:

$$\beta' = \beta + (\mu_{TS} - \mu_{reactant})/d$$

where β and d are 0.5 and 3, which are consistent with the previous report.¹

References

1. X. Nie, M. R. Esopi, M. J. Janik and A. Asthagiri, Angew. Chem. Int. Ed., 2013, 52, 2459-2462.

Fig. S6 Energy barrier for the direct dissociative process of N₂ on Mo₂@C₂N.

Fig. S7 Reaction pathway and energy barriers of N_2 fixation on Fe₂@C₂N catalysts.