Supplementary Information

Transition Metal Modification and Carbon Vacancies Promoted Cr₂CO₂ (MXenes): A New Opportunity for Highly Active Catalyst for Hydrogen Evolution Reaction

Yu-Wen Cheng¹, Jian-Hong Dai², Yu-Min Zhang¹, Yan Song²,

1 Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin

Institute of Technology, Harbin 150001, PR China

2 School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West

Wenhua Road, Weihai, 264209, PR China

Corresponding author:

E-mail: sy@hitwh.edu.cn; zhym@hit.edu.cn

Figure S1. Lattice structures of Cr_2C and Cr_2CO_2 . (a) side view of Cr_2C , (b) top view of Cr_2C , and (c) side view of Cr_2CO_2

Figure S2. Band structure (left) and density of states (right) of (a) Cr_2C and (b) Cr_2CO_2 .

Figure S3. Free energy diagram of HER processing of Cr_2CO_2 under different H coverage \Box .

Figure S4. The binding energy of transition metal with Cr₂CO₂ surface.

Figure S5. Atomic configurations of $\text{TM-Cr}_2\text{CO}_2$ after AIMD simulations under 300K and 500K. The AIMD calculations were typically run for 8ps (Part A) and 4ps (Part B), with a time step of 2 fs.

Figures S6. Charge density difference of (a) Ni- Cr_2CO_2 and (b) Co- Cr_2CO_2 under 12.5% TM coverage. The light blue and yellow colors denote the negative and positive areas, respectively.

Figure S7. The schematics of (a) perfect Cr_2CO_2 and (b) V_C - Cr_2CO_2 . The concentration of carbon vacancies is 11.11%. In this figure we use Cr_2C rather than Cr_2CO_2 to identify the carbon vacancies.

Figure S8. Atomic configurations of V_C -Cr₂C after *ab initio* molecular dynamics (AIMD) simulations under the temperature of 300K and 500K. The AIMD calculations were typically run for 8ps (Part A) and 4ps (Part B), with a time step of 2 fs. (a) 12.5%V_C-Cr₂C at 300K, (b) 11.11%V_C-Cr₂C at 300K, (c) 12.5%V_C-Cr₂C at 500K, and (d) 11.11%V_C-Cr₂C at 500K.

Figure S9. Atomic configurations of V_C -Cr₂CO₂ at end of a*b initio* molecular dynamics (AIMD) simulations under the temperature of 500K. The AIMD calculations were typically run for 8ps (Part A) and 4ps (Part B), with a time step of 2fs.(a) 12.5%V_C-Cr₂CO₂ at 500K and (b) 11.11%V_C-Cr₂CO₂ at 500K.