Supporting Information

Impact of trace extrinsic defect formation on the symmetry transition in spinel LiNi_{0.5}Mn_{1.5}O_{4- δ} and their electrochemical characteristics

Hiromasa Shiiba,^{a,†} Nobuyuki Zettsu, ^{a,b, †,*} Satoru Kida,^a Dae-wook Kim,^a and Katsuya Teshima ^{a,b, *}

^a Department of Materials Chemistry, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

^b Center for Energy and Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

A schematic illustration of the metal excess model is shown in Fig. S1. The defect formation energy in metal excess models is expressed with Kröger-Vink;

$$\frac{1}{4} \left(\text{LiNi}_{0.5-x} \text{Mn}_{1.5} M_x \text{O}_4 \right) \rightarrow \frac{1}{4} \left(\text{Li}_i^{'} + \left(\frac{1}{2} - x\right) \text{Ni}_i^{''} + \frac{3}{2} \text{Mn}_i^{'''} + x \text{M}_i^{''} + 8 \text{e}' + 2 \text{O}_2 \right)$$
(S1)

$$\frac{1}{4} \left(\text{LiNi}_{0.5} \text{Mn}_{1.5-y} M_y \text{O}_4 \right) \rightarrow \frac{1}{4} \left(\text{Li}_i^{\,\cdot} + \frac{1}{2} \text{Ni}_i^{\,\cdot} + \left(\frac{3}{2} - y \right) \text{Mn}_i^{\,\cdot} + y \text{M}_i^{\,\cdot} + 8 \text{e}' + 2 \text{O}_2 \right)$$
(S2)

The defect generation energy can be expressed with the equations (1) and (2) in the main text using the total energy E (X) obtained by the first principles calculation.

Effects of transition metal substitution on the Ni²⁺/Mn⁴⁺ ordering

Two different types of oxygen defect models, an oxygen vacancy model and metal-excess model, were used for the calculations. Oxygen vacancies occupied at nearest neighbor oxygen sites from substituted metals in the oxygen vacancy model. The oxygen vacancy formation energies for $P4_332$ and Fd-3m LiNi_{0.375}Mn_{1.5}M_{0.125}O₄ and LiNi_{0.5}Mn_{1.375}M_{0.125}O₄ (M = Ti, V, Cr, Fe, Co, Cu, Zn, Sn) are summarized in Supplementary Figure S1. From the crystallographic features, oxygen atoms included in both $P4_332$ and Fd-3m type symmetries have two possible spatial

configurations: coordinated with one Ni atom and two Mn atoms, or coordinated with three Mn atoms. A series of LiNi_{0.375}Mn_{1.5}M_{0.125}O₄ derivatives showed higher formation energies than those of LiNi_{0.5}Mn_{1.375}M_{0.125}O₄ compounds independent of the transition metal type. Since the formation of lattice defects as described by M_{Ni2+} simultaneously generates Mn³⁺ and M_{Mn4+} lattice defects due to corresponding charge neutralization, oxygen vacancy-free LiNi_{0.375}Mn_{1.5}M_{0.125}O₄ compounds are considered to be less stable. In contrast, the oxygen vacancy formation energies for the incorporation of Fe_{Mn}, Cu_{Ni}, Cu_{Mn}, and Zn_{Mn}, were significantly lower than stoichiometric LiNi_{0.5}Mn_{1.5}O₄. In particularly, divalent Cu_{Mn}^{2+} and Zn_{Mn}^{2+} can be preferentially incorporated at oxygen vacancy sites without Mn³⁺ formation.

We further considered the effects of Frenkel defects, in which transition metals occupy interstitial sites, by using the metal-excess model for DFT calculations. The positions of two neighboring tetrahedral Li ions are assumed to migrate to octahedral vacancy sites, as shown in Supplementary Figure S2(a); this is the most stable cationic arrangement for interstitial Ni and Mn. Defect formation energies for the metal-excess model for LiNi_{0.5-x}Mn_{1.5}M_xO₄ and LiNi_{0.5}Mn_{1.5}. _yM_yO₄ ($0 \le x \le 0.125$, $0 \le y \le 0.125$, M = (b) Ti, (c) V, (d) Cr, (e) Fe, (f) Co, (g) Cu, (h) Zn, (i) Sn) with *P*4₃32 and *Fd-3m* type symmetries were summarized in Supplementary Figure S2(b-i). As in the case of the stoichiometric LiNi_{0.5}Mn_{1.5}O₄, the defect formation energy of the *Fd-3m* type structure was lower than that of the *P*4₃32 structure, independent of the transition metal cation inducing the extrinsic defect formation. We further evaluated antisite defect formation energies for the substituted transition metals and neighboring Ni/Mn in both *P*4₃32 and *Fd-3m*, as shown in Supplementary Figure S3. The Ni or Mn sites forming the antisite defects are spatially distinguished by the difference in the point-to-point sharing and the edge sharing with the Li octahedron. Two different Ni sites (P - MNi 1, P - MNi 2) and two Mn sites (P - MMn 1, P - MMn 2) are possible in the $P4_332$ structure, and one possible Ni site (F - MNi) and three Mn sites (F - MMn 1, F - MMn 2, F - MMn 3) exists in the Fd-3m structure, respectively. Our calculations imply that Ti, V, Cr, Fe, Co, Sn cations preferentially occupy Mn sites, forming extrinsic defects (Ti_{Mn}^{\times} , V_{Mn}^{\times} , Cr_{Mn}^{\cdot} , Fe_{Mn}^{\cdot} , Co_{Mn}^{\cdot} , Sn_{Mn}^{\times}) compared to the occupation of interstitial sites (Frenkel defects). In contrast, Cu²⁺ favorably occupied interstitial sites (Cu_{int}^{\cdot}). We estimated the energy for disordering Ni/Mn arrangements caused by the penetration of transition metals into interstitial sites (Supplementary Figure S4). This implies that the Ni/Mn disordering was highly promoted due solely to Cu substitution according to negative antisite energy.

Schematic illustration of metal-excess model for LiNi_{0.5}Mn_{1.5-y}M_yO₄.

Oxygen vacancy formation energies for stoichiometric $LiNi_{0.5}Mn_{1.5}O_4$ with $P4_332$ and Fd-3m type symmetries.

(a) Schematic illustration of positional transitions in two neighboring tetrahedral Li ions to octahedral vacancy sites, and defect formation energies for metal-excess model for LiNi_{0.5-x}Mn_{1.5}M_xO₄ and LiNi_{0.5}Mn_{1.5-y}M_yO₄ ($0 \le x \le 0.125$, $0 \le y \le 0.125$, M = (b) Ti, (c) V, (d) Cr, (e) Fe, (f) Co, (g) Cu, (h) Zn, (i) Sn) with P4₃32 and Fd-3m type symmetries.

Atomic arrangement of nearest neighbor (NN) Ni/Mn around incorporated extrinsic interstitial metal (a) in $P4_332$, and (b), (c) in Fd-3m type structures. Possible antisite defects for the interstitial metal and NN Ni/Mn are described in the illustrations by the arrows. Corresponding antisite defect formation energies in both (d) $P4_332$ and (e) Fd-3m

Antisite defect formation energies for the substituted transition metal and neighboring Ni in $LiNi_{0.5}Mn_{1.5}O_4$ with $P4_332$ symmetry

Powder XRD profiles and Rietveld refinement results of the Cu-incorporated $LiNi_{0.5}Mn_{1.5}O_{4-\delta}$ derivative crystals.

(a) Third cycle charge–discharge profiles at a current density corresponding to 0.2 C at room temperature of $LiNi_{0.5}Mn_{1.5}O_{4-\delta}/Li$ and $LiNi_{0.5}Zn_{0.01}Mn_{1.49}O_{4-\delta}/Li$ cells. (b) Raman shift of $LiNi_{0.5}Mn_{1.5}O_{4-\delta}$ and $LiNi_{0.5}Mn_{1.49}Zn_{0.01}O_{4-\delta}$. (c) The calculated Li/M Antisite defect formation energies of $LiNi_{0.5}Mn_{1.5}O_{4-\delta}$ and $LiNi_{0.5}Mn_{1.49}Zn_{0.01}O_{4-\delta}$.

(a) Formation energies for the most stable Li/vacancy arrangement and (b) theoretical voltage slope as a function of z in Li_{1-z}Ni_{0.5}Mn_{1.375}Cu_{0.125}O_{3.875}.

Supplementary Figure S9

Atomic valence distribution near the Cu²⁺ and oxygen vacancies in (a) $LiNi_{0.5}Mn_{1.5}O_{4-\delta}$, (b) $LiNi_{0.5-x}Mn_{1.5}Cu_xO_{4-x}$, and (c) $LiNi_{0.5}Mn_{1.5-y}Cu_yO_{4-y}$.

Supplementary Table S1

Chemical compositions of $LiNi_{0.5}Mn_{1.5}O_{4-\delta}$ and Cu-incorporated derivative crystals, as evaluated by inductively coupled plasma optical emission spectrometry.

	Li	:	Ni	:	Cu	:	Mn
Cu-incorporated LiNi _{0.5} Mn _{1.5} O _{4-δ}	1.98	:	1	:	0.02	:	2.98
$LiNi_{0.5}Mn_{1.5}O_{4\text{-}\delta}$	1.96	:	1	:	-	:	3.02